On a conjecture of Mahowald on the cohomology of finite sub-Hopf algebras of the Steenrod algebra
Document Type
Article
Publication Date
2020
Publication Title
Homology, Homotopy and Applications
Abstract
Mahowald’s conjecture arose as part of a program attempting to view chromatic phenomena in stable homotopy theory through the lens of the classical Adams spectral sequence. The conjecture predicts the existence of nonzero classes in the cohomology of the finite sub-Hopf algebras A(n)" role="presentation" style="display: inline; line-height: normal; font-size: 17.3333px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(64, 64, 64); font-family: "Times New Roman", Times, serif; position: relative;">A(n)A(n) of the mod2" role="presentation" style="display: inline; line-height: normal; font-size: 17.3333px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(64, 64, 64); font-family: "Times New Roman", Times, serif; position: relative;">mod2mod2 Steenrod algebra that correspond to generators in the homotopy rings of certain periodic spectra. The purpose of this note is to present a proof of the conjecture.
Recommended Citation
Shick, Paul L., "On a conjecture of Mahowald on the cohomology of finite sub-Hopf algebras of the Steenrod algebra" (2020). 2020 Faculty Bibliography. 11.
https://collected.jcu.edu/fac_bib_2020/11
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.