On a conjecture of Mahowald on the cohomology of finite sub-Hopf algebras of the Steenrod algebra

Document Type

Article

Publication Date

2020

Publication Title

Homology, Homotopy and Applications

Abstract

Mahowald’s conjecture arose as part of a program attempting to view chromatic phenomena in stable homotopy theory through the lens of the classical Adams spectral sequence. The conjecture predicts the existence of nonzero classes in the cohomology of the finite sub-Hopf algebras A(n)" role="presentation" style="display: inline; line-height: normal; font-size: 17.3333px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(64, 64, 64); font-family: "Times New Roman", Times, serif; position: relative;">A(n)A(n) of the mod⁡2" role="presentation" style="display: inline; line-height: normal; font-size: 17.3333px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(64, 64, 64); font-family: "Times New Roman", Times, serif; position: relative;">mod2mod⁡2 Steenrod algebra that correspond to generators in the homotopy rings of certain periodic spectra. The purpose of this note is to present a proof of the conjecture.

Share

COinS