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I. INTRODUCTION 

What do rabbit breeding, tornadoes, the Chambered Nautilus, a pentagram, the rhythm of a 

heartbeat, apple seeds, the shape of a credit card, a pinecone, the human ear, DaVinci’s Last 

Supper, the structure of DNA, a light switch cover, and the structure of galaxies all have in 

common? Each relates to an extraordinary ratio that is highly efficient in nature, profoundly 

attractive to the human eye, and some claim, even divinely inspired. This special ratio is referred 

to as the “Golden Ratio” and is also known as the divine proportion, golden section, and golden 

mean. The Golden Ratio has a constant numeric value called “phi” (pronounced “FEE,” or “FI”) 

which is thought to be the most beautiful and astounding of all numbers. Phi, expressed as the 

Greek letter, φ, has an approximate numeric value of 1.618033988749895.  

       There is a generally-held consensus among classicists, and historians of mathematics, that the 

Golden Ratio was first understood and used by ancient Greek mathematicians during the periods 

known as the Classical and Hellenistic Periods of Greek Mathematics (from around 600 BCE to 

600 CE). Phi was named for the Greek architect, mathematician, painter and sculptor, Pheidias, 

who used the divine proportion in his architecture. Because of the relationship between the Golden 

Ratio and the pentagon, some scholars have claimed that φ was known as early as the time of the 

Babylonians. Although there do exist such artifacts as cave drawings of pentagrams and pentagons 

as well as cuneiform tablets showing that the Babylonians had a rudimentary method for 

calculating the area of a pentagon, there is no conclusive evidence that they used, or were aware 

of, the Golden Ratio [10, p45]. While theories that the Golden Ratio was known in ancient Egypt, 

most specifically, that it was used to construct the Great Pyramid of Giza in Cairo (completed 

around 2560 BCE), are common, numerous mathematicians have presented well-researched 

arguments vigorously refuting these theories. Furthermore, it is important to appropriately 

contextualize the appearance of the Golden Ratio within the history of mathematics because the 

birth of Greek mathematics marked a monumental shift from the more empirical approaches of 

earlier civilizations to a highly sophisticated and intellectually rigorous new paradigm [1, p3]. For 

the purposes of this essay, the assumption is that φ was first understood during the time of the 

Greeks. 

     Since phi’s digits do not terminate or repeat, φ, like π, is an irrational number meaning that it 

cannot be written as a ratio of two integer, or as a terminating, or repeating decimal.  
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     The Golden Ratio is defined as the division of a line into two parts such that the following is 

true: the measure of the longer part ÷ the measure of the shorter part = the whole length ÷ the 

measure of the longer part. Consider Figure 1.1 below.  
 

Figure 1.1 

 

 
 

If the longer part has a length of x, and the shorter part has a length of 1, the whole length is x + 1. 

Figure 1.2 shows the solution to the quadratic equation resulting from setting up the two equal 

ratios and solving for x. 
 

Figure 1.2 

                                               
1

1

x x

x


  

                             Cross-multiplication produces: 

                                              

2

2

2

1( 1)

1

1 0

x x

x x

x x

 

 

  

 

             Using the quadratic formula to solve the equation: 

                                       

2

1

2

1 ( 1) 4(1)( 1)

2(1)

1 1 4

2

1 5
1.61803...

2

1 5
0.61803...

2

x

x

x

x

   


 



 


  

 

        Disregarding the negative root, leaves 1.61803… = φ = phi! 

 

     This essay will explore various connections and coincidences related to The Golden Ratio that 

appear in the natural world as well as in human culture. Manifestations of φ in the structure of the 

universe have been observed and studied since at least the time of the ancient Greeks. The 
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examples presented are only a very small sample of known appearances of φ and have been 

selected because they are expected to be of interest to the reader. 

     A brief history of the Golden Ratio in the ancient world will be followed by a discussion of φ 

in the areas of algebra, architecture, art, design, music, the natural world, human anatomy, and 

geometry. It will be shown that some appearances of φ, are only approximate and could be 

coincidental, while others are so undeniably accurate, and surprising that it is easy to understand 

why the Greeks would have believed they were divinely inspired.   

 

II. THE EARLY GREEKS 

The intention of Greek mathematics was not generally to solve practical problems, but rather to 

pursue knowledge for its own sake. Greek scholars established a contextualized intellectual model 

for studying abstract ideas, a model that is the very foundation for modern Western mathematical, 

scientific, medical, and philosophical inquiry. This involved consciously considering 

epistemology, understanding constraints, developing academic language, and explicitly using the 

concept of deductive proof. Whereas the Greeks studied broadly in many areas of what today we 

call philosophy, architecture, law, science, medicine, astronomy and literature, their contributions 

in the area of mathematics are considered to be by far the most impressive. They were committed 

to establishing a “conscious programme of study of abstract mathematical entities that was 

significantly different from empirical studies” [1, p2]. A specific indication that the Greeks 

pursued mathematical knowledge for its own sake is apparent in the types of problems that they 

posed to themselves. The nature of these problems suggests that the Greeks intended for scholars 

to contemplate, engage in discourse, and adhere to standards that would hold up to the highest 

scrutiny. 

       To get an idea of the types of problems the Greeks thought were important, consider the three 

unsolved classical Greek problems: squaring the circle, doubling the cube, and trisecting the angle. 

The Greeks required that these problems be solved using straightedge and compass which was the 

tradition established by Euclid in what is known to be the most influential textbook of all times, 

The Elements. To square a circle means to construct a square that has exactly the same area as the 

given circle. The problem of squaring the circle can be solved using different tools but it has never 

been solved using straightedge and compass (squaring the triangle, and the rectangle with 

straightedge and compass can successfully be accomplished). To get an idea of how a problem is 
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solved using a construction with straightedge and compass, see Figure 2.1 for an example of 

“squaring a rectangle.”  

 

          

     Given the rectangle BCDE, draw EF = DE. 

Find the midpoint of BF and call it G. Then 

construct a semicircle centered at G. Extend DE 

to intersect the semicircle at point H. Use length 

EH to mark off vertices at L and K. Draw HL, LK 

and FK to create square EHLK. The resulting 

square has an area equal to the area of the original 

rectangle BCDE [2, p13]. The Pythagorean 

Theorem can then be used to prove that the area 

of the rectangle is equal to the area of the square 

[2, p13]. See Figure 2.2. 

 

 

        Figure 2.2 

 

 

 

 

 

 

 

 

 

( )Area BCDE BE EF BE EF     

                                    2 2 2( )( )a b a b a b c      . 

      

Figure 2.1 
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       Although squaring the circle with straightedge and compass is impossible, attempts to solve 

this problem have been made by some of the most accomplished mathematicians of all time for 

over 2000 years. This work has contributed significantly to human understanding in other areas of 

mathematics. One such example is the study of π. In the 19th century, Ferdinand von Lindemann, 

a German mathematician, finally proved that squaring the circle with straightedge and compass is 

actually impossible. His proof depends on the fact that π is a transcendental number and, therefore, 

cannot be a root of a polynomial equation with integer coefficients. 

      Though there are few surviving documents proving the contributions of any particular Greek 

mathematician, there are long established traditions in the history of math drawn from Euclid’s 

Elements and evidence obtained before original artifacts were lost, and also from the extensive 

writings of philosophers such as Proclus, Plato, and Aristotle for whom some works have survived. 

The first two major Greek mathematicians were known to be Thales of Miletus (624–548 BCE), 

and Pythagoras of Samos (580–500 BCE) [10, p42]. Thales and Pythagoras were thought to have 

traveled to Babylon and Egypt, where they were able to obtain firsthand knowledge of ancient 

mathematics including geometry and astronomy. Thales is credited with being the first to make 

mathematics abstract, and with introducing the concept of deductive proof [10, p4], part of the 

reason that the excellence of Greek mathematics surpassed that of earlier civilizations. Pythagoras 

is known to be the originator of an astonishingly prolific intellectual movement and is a character 

of great intrigue as he was believed to be a mystic and a prophet. Both scholars are associated with 

well-known schools: Thales with the Ionian School which emphasized “rational thought over 

religious belief” [10, p4], and Pythagoras with the Pythagorean School, which was a secret, 

communal society with unusual moral requirements such as vegetarianism. For the Pythagoreans, 

the motto was “All is Number” [14, p45], which emphasizes the Pythagorean belief that the 

entirety of nature could be explained in terms of whole numbers, or ratios of whole numbers. 

       An essential question, key to ancient mathematics, was “is nature discrete or continuous?” 

[10, p2]. The early Greeks relied on The Principle of Commensurability which states that there is 

always some common unit that can measure any two things, i.e., that nature is discrete. In the 5th 

century BCE, there occurred what is referred to as “The First Great Crisis of Mathematics,” the 

discovery, allegedly by Hippasus of Metapontum, that the Principle of Commensurability is 

actually false. This created a great upset because it meant that proofs, which depended on 

commensurability, were based on false assumptions and had to be reconsidered [10, p7]. Hippasus’ 
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discovery is easily observed in the unit square shown below. By the Pythagorean Theorem, the 

length of the diagonal is found to be 2 .                
  

 

 

 

        

 

       There is, of course, uncertainty about how exactly it was determined by Hippasus that 2  is 

irrational but in his writings about incommensurability, Aristotle supposedly referred to a method 

similar to the well-known proof, shown below, which is a proof by contradiction and depends on 

“the distinction between even and odd” [14, p66]. 

Theorem: 2 is irrational. 

Proof:                                            Assume that 2 is rational. 

                                    Then 2
p

q
  where p and q have no common factors, 

                                                               and  2 
2

2

p

q
 . 

                                          Then 2q2 = p2 which means p2 must be even. 

                                  Therefore, p must be even which implies that q must be odd. 

                                                Let p = 2r and substitute into 2q2 = p2 then 

                                                                          2q2 = 4r2 

                                                                                                                  q2 = 2r2. 

                                                                    Then q2 must be even which means q is even. 

                           So, p and q are both even which means they do have a common factor. 

                                               By contradiction, 2  must be irrational ∎ 

 

     An alternative theory is that Hippasus actually drew his conclusion from making observations 

about pentagons. When connecting the vertices of a regular pentagon with five diagonals to form 

a pentagram, it can be observed that a smaller identical pentagon is created. When the process is 

repeated, yet another even smaller pentagon is formed. This process can be repeated indefinitely 

2 2 21 1 c   

        22 c  

     2 c  
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with each iteration creating a smaller and smaller pentagon. The ratio of the diagonal to the side is 

exactly the same for each iteration and this relationship also repeats indefinitely leading to the 

conclusion that the ratio of a diagonal of a pentagon to a side is not rational [14, p66]. A proof of 

why this is the case will be shown on the next page. If Hippasus discovered incommensurability 

in this way, however, then he would have proved that 5 is irrational, rather than 2 , since the 

ratio of the diagonal of a pentagon to the side is actually the Golden 

Ratio which includes 5 in its calculation. The proof that 5 is 

irrational is shown below. A fascinating story contradicting this 

hypothesis comes from Plato’s dialogue, Theaetetus (written around 

368 BCE), in which credit for the discovery of the 

incommensurability of the square roots of 3, 5, 6… (and all non-

perfect squares up to 17) is attributed to Theaetetus but the incommensurability of 2  is explicitly 

not included, the theory being that it would have been common knowledge that Hippasus had 

already proved this fact almost 200 years earlier [13, p243]. 

Theorem: 5 is irrational. 

Proof:                                              Assume that 5 is rational. 

                                    Then 5
p

q
  where p and q have no common factors, 

                                                               and  5 
2

2

p

q
 . 

                                     Then 5q2 = p2 which means p2 must be divisible by 5. 

                 Therefore, p must be divisible by 5 which implies that q must not be divisible by 5. 

                                                Let p = 5r and substitute into 5q2 = p2 then 

                                                                          5q2 = 25r2 

                                                                                                                  q2 = 5r2. 

                                                Then q2 must be divisible by 5 which means q is divisible by 5. 

                  So, p and q are both divisible by 5 which means they do have a common factor. 

                                               By contradiction, 5  must be irrational ∎ 



9 
 

      To see precisely how the length of the diagonal of a pentagon relates to the length of its side, 

it is helpful to consider the following triangle similarity theorem which appears in Book VI of 

Euclid’s Elements [11, p79]. ADB has been extracted from a regular pentagon where the side of 

the pentagon is length BD, and the diagonal is length AB. 

 
 

Theorem: If two triangles have congruent angles, then the triangles 
are similar and corresponding sides are proportional. 
 

Proof:  
 

Since ADB and DBC have congruent angles, ADB DBC  . 

Then it follows that 
DB AB

BC DB
 .  Since ADC and DBC are both 

isosceles triangles, DB = DC = AC. Therefore, 
AC AB

BC AC
 ∎  

Given that 
AC AB

BC AC
 , the diagonal AB shown below is analogous to the length x + 1 in Figure 

1.1. By the definition of the Golden Ratio, AB is divided into mean and extreme ratio. Therefore, 

the whole length, divided by the length of the longer section, AC, is equal to the Golden Ratio and 

then, of course, the longer section, AC, divided by the 

shorter section, BC, is also equal to the Golden Ratio. So, 

in any regular pentagon, the ratio of the length of the 

diagonal to the length of the side will always be equal to φ. 

With respect to the triangles above, since the ratios of the 

leg lengths to the base lengths are equal to φ, the triangles 

are called “Golden Triangles!” 

        

 

     Once Hippasus disclosed the existence of the irrational numbers to the Pythagoreans, legend 

has it that he met a tragic death and was possibly drowned at sea over his controversial assertion. 

Regardless of how historically accurate this particular story is and whether or not Hippasus came 

to his conclusion working with 2 or the pentagon–pentagram, the association of the Golden Ratio 

with the pentagram, as well as with the Platonic solids, which will be discussed later, were known 
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to be of particular interest and curiosity to the Pythagoreans for mathematical as well as spiritual 

reasons. They considered the pentagram to have mystical qualities and the ubiquitous Golden 

Ratio, the ultimate theological and philosophical symbol, to be especially significant to human 

understanding of the realities of the universe. 

      The rudimentary timeline below makes it possible to get an idea of when various ancient Greek 

mathematicians and philosophers likely lived and who could have been alive during the same time 

period. Some historians say that Thales and Pythagoras differed in age by approximately 50 years 

and could not have worked together. Others believe that Thales was actually Pythagoras’ teacher 

and advisor. 

                               

                         Timeline of Greek Mathematicians & Philosophers [10, p51] 
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III. ALGEBRAIC PROPERTIES OF THE GOLDEN RATIO 

The early Greeks were geometers, and though the Golden Ratio has considerable significance to 

geometry, part of what makes it so extraordinary is that it also has very unique and surprising 

algebraic properties. In Figure 1.2, the solutions to the quadratic equation obtained from the 

definition of the Golden Ratio were calculated to be:     

                                                   1

1 5

2
x


       and     2

1 5

2
x


  

The first unusual algebraic property can be observed when squaring an approximation of the 

irrational number, φ. 

 (1.618033989)2 ≈ 2.618033989 

Notice the digits after the decimal point of φ2 are the same as the digits after the decimal point of 

φ. The only real number whose square is equal to its base plus one is φ!  

A second unusual algebraic property can be illustrated by dividing one by φ. 

 1 ÷ 1.618033989 ≈ 0.618033989 

Interestingly, φ is the only real number whose reciprocal is one less than the original number. In 

other words, φ has the following algebraic properties: 

           1.)  φ2 = φ + 1  

           2.)  
1


 = φ – 1 

Letting φ = x, x2
 = x + 1 and 

1
1x

x
   can both be re-written as 2 1 0x x   , the original quadratic 

equation from which the solutions were calculated. 

Additional Algebraic Properties: If the Greek letter φ designates the positive root and φ’ 

designates the negative root, φ and φ’ have the following properties [10, p75]: 

3.)   φ φ’ = –1 

4.)   φ + φ’ = 1                                                                                                     
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      In this section, several unique manifestations of φ in algebra will be explored showing that the 

Golden Ratio turns up in many surprising places. This exploration begins with an exercise.  

What is the value of the expression 1 1 1 1 ...    ? Evaluating a square root expression 

that continues forever may initially seem burdensome, perplexing, or even impossible. Using a 

simple but creative trick demonstrates that there is actually an efficient and beautiful method for 

calculating its value. First, let x = 1 1 1 1 ...     

 

                                   Then square both sides to get x2 = 1 + 1 1 1 ...    
 

       Since x = 1 1 1 1 ...    , x can be substituted for 1 1 1 ...   to get x2 = 1 + x 

which is the same equation that just appeared on the previous page. The solution is φ. So, with 

repeated iterations, the value of the original expression converges to the Golden Ratio! (To be 

rigorous, it is necessary to use the machinery of sequences and their convergences but this intuitive 

argument conveys the main idea.) The value of the following continued fraction can be computed 

in a similar way.                  

                                                       Given  
1

1
1

1
1

1
1

1
1 ...









  

                                                   Let x = 
1

1
1

1
1

1
1

1
1 ...









 

 

Then substitute x for the second term on the right side of the continued fraction to produce the 

equation, 
1

1x
x

  .  Multiplying both sides by x will result in the equation, x2 = 1 + x, which again 

has a solution of φ! As the fraction continues, its value converges to the Golden Ratio. 
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      In 1202 CE, Leonardo de Pisa, better known as Leonardo Fibonacci, published his famous 

Liber Abaci (which means “book of calculation”). Fibonacci was the son of a member of the 

Bonacci family, Guglielmo, who traveled throughout the Mediterranean as a representative of the 

Italian government collecting taxes for the Republic of Pisa. Fibonacci learned a great deal about 

arithmetic and algebra traveling with his father in Egypt, Syria, Greece and present-day Algeria. 

Whereas Fibonacci acknowledges the connection between arithmetic and geometry in Liber Abaci, 

he gives the majority of his attention to arithmetic. Much of the book deals with the Hindu-Arabic 

numerals which Fibonacci asserts are far superior to the Roman numerals, used at the time in 

Europe, because they operate within a place-value system. Pisa was a busy commercial port during 

the 12th century and Fibonacci realized the clumsiness of using Roman numerals to conduct 

business and maintain trade records [11, p5]. Liber Abaci brought Fibonacci substantial fame and 

recognition, but much of the remainder of the book is considered to be tedious because it deals in 

great detail with cumbersome fractions used for commercial transactions. A very important 

exception is Fibonacci’s well-known rabbit problem, which gives rise to the amazing Fibonacci 

sequence. The rabbit problem goes something like this: 

A farmer places one pair of baby rabbits in a fenced area. How many pairs of 

rabbits will be produced in one year if its assumed that every month each pair 

of mature rabbits produces a new pair of rabbits that is productive from its 

second month on? [14, p230]. 

      After one month, the pair of rabbits is of mating age. One month after that, a second pair of 

rabbits is born. After the third month, the original pair gives birth to another pair. And then the 

fourth month, the original pair will produce a new pair and the second pair will also produce a new 

pair. This continues to generate the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233… which 

is the Fibonacci Sequence where each term (after the first two) is the sum of the two terms that 

came immediately before it. A visual representation of the pattern appears in Figure 3.1 on the 

next page. To express the property that each term is equal to the sum of the two preceding terms, 

the notation used to define the nth Fibonacci number is Fn = Fn-1 + Fn-2. When a term in a sequence 

is defined by a preceding term or terms, the sequence is “recursive.” The Fibonacci sequence is 

thought to be the first recursive sequence known to European mathematicians.  
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Fibonacci’s Famous Rabbit Problem 

 

[Figure 3.1. Fibonacci’s Rabbits. Retrieved from https://jcdr.net/articles/PDF/13317/ 
42772_PD_(V-2-PK_PrG_OM_SL)_GC(PrG_KM_OM)_PN(SL).pdf in June, 2020]                    

                           

      As will be discussed later, the Fibonacci sequence appears in many other phenomena besides 

rabbit breeding. This is why Fibonacci is so well known and why the Fibonacci sequence is studied 

to such a great extent in mathematics, science, finance, and other disciplines. To understand how 

the Fibonacci sequence is related to the Golden Ratio, consider the values obtained when quotients 

of successive terms are calculated. Dividing Fn by Fn-1 for the first fifteen pairs of consecutive 

terms of the Fibonacci sequence, reveals an intriguing pattern:                                   

                                                                       1/1 = 1.000000 
                                                                       2/1 = 2.000000 
                                                                       3/2 = 1.500000 
                                                                       5/3 = 1.666666 
                                                                       8/5 = 1.600000 
                                                                     13/8 = 1.625000 
                                                                   21/13 = 1.615385 
                                                                   34/21 = 1.619048 
                                                                   55/34 = 1.617647 
                                                                   89/55 = 1.618182 
                                                                 144/89 = 1.617978 
                                                               233/144 = 1.618056 
                                                               377/233 = 1.618026 
                                                               610/377 = 1.618037  
                                                               987/610 = 1.618033                       
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       As additional quotients are calculated, it can be observed that the values are alternating, 

slightly below and then slightly above, and gradually getting very close to 1.618033989…, the 

decimal approximation of the Golden Ratio! As n gets larger, Fn/Fn-1 converges to φ. This type of 

sequence is said to be “oscillating” and “the limit of the sequence of the ratios of adjacent terms 

of the Fibonacci sequence is φ” [10, p76] which is expressed:  

                                                                    Lim  1/n nF F    φ 
                                                                   n    
 
      What is truly astounding is that for any sequence where Fn = Fn-1 + Fn-2, the ratios of pairs of 

successive terms, i.e., Fn/Fn-1 for n = 1, 2, 3, 4…, converge to φ. For instance, randomly choosing 

two and four for the first two terms, consider the resulting sequence and the associated ratios of 

consecutive terms: 
 

                        2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1,220, 1,974…  
 

                                                                4/2 = 2.000000   
                                                                       6/4 = 1.500000 
                                                                     10/6 = 1.666667  
                                                                   16/10 = 1.600000  
                                                                   26/16 = 1.625000 
                                                                   42/26 = 1.615385 
                                                                   68/42 = 1.619048 
                                                                 110/68 = 1.617647   

                                                               178/110 = 1.618182  
                                                               288/178 = 1.617978 
                                                               466/288 = 1.618056 
                                                               754/466 = 1.618026 
                                                            1,220/754 = 1.618037 
                                                         1,974/1,220 = 1.618033 
 
      Just like with the Fibonacci sequence, the quotients of consecutive terms in this random 

sequence oscillate between values that are slightly more than phi and then slightly less. It can 

easily be observed that it does not take long for the values of the successive ratios to converge to 

φ! While this coincidence is noteworthy, most of the amazing properties of the Fibonacci sequence 

are unique to the sequence 1, 1, 2, 3, 5, 8...  
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The connection between the Fibonacci numbers and the Golden Ratio is made explicit by way of 

Binet’s formula below which can be used to calculate the nth Fibonacci number: 
 

                                                      

1 5 1 5
2 2

5

n n

nF

       
      

 

A simpler version of this formula can be written: 
                                        

                                                                
(1 )

5

n n

nF
  

   

For example, to calculate the 15th Fibonacci number, let n = 15. 
 

                                                          
15 15

15

(1 )
610

5
F

  
             

 

To prove Binet’s formula, the quadratic equation 2 1 0x x   from Figure 1.2 can be used to write 

expressions for all xn where n is an integer ≥ 1. 

Proof: 

Since 2 1x x  ,             
                                                                       x x                                                

                                                                     2 1x x   

                                                             3 2x x x    
                                                                         ( 1)x x    

                                                                  

2

( 1)

2 1

x x

x x

x

 
  
 

  

                                                             4 3x x x    

                                                                  
2

(2 1)

2

2( 1)

3 2

x x

x x

x x

x

  

 
  
 

  

                                                                     
5

6

5 3

8 5.

x x

x x

 

 
                                             …  
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A pattern emerges showing that xn = Fn x + Fn-1, i.e., the coefficient of x will be the nth Fibonacci 

number and the constant will be the preceding Fibonacci number.  The roots of the original 

quadratic are φ = 
1 5

2


and φ’ = 

1 5

2


. Since both are solutions to the quadratic, they each 

satisfy the equation, xn = Fn x + Fn-1. Then, φ n= Fn φ + Fn-1 and (φ’) n = Fn φ’ + Fn-1. 

So, φ n – (φ’) n =Fn (φ – φ’) + Fn-1 – Fn-1. Substituting the values of φ and φ’ back into the equation, 

then 
1 5 1 5 1 5 1 5

2 2 2 2

n n

nF
        

            
     

. 

                                            Therefore, 

1 5 1 5
2 2

5

n n

nF

       
     ∎ 

 
 

       In H.E. Huntley’s book, The Divine Proportion: A Study in Mathematical Beauty, Huntley 

asserts that one of the aspects of aesthetic appeal is the feeling of “surprise at the unexpected 

encounter” [7, p36]. The presence of the Fibonacci sequence is not immediately perceptible in 

Pascal’s Triangle, pictured below, but without too much work, it makes a surprising appearance. 

Consider not the obvious diagonals of the triangle, but rather the shallow diagonals which may be 

more easily observed in the triangle on the right. Notice that the sums (in red) of the successive 

shallow diagonals comprise the Fibonacci sequence! 
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       An apparent paradox related to the Fibonacci sequence and the Golden Ratio turns up in the 

following problem: “Construct a square whose side has a length equal to the sum of two 

consecutive Fibonacci numbers…Dissect the square into the four sections indicated and fit them 

together to form a rectangle” [7, p48]. Choosing five and eight, it can be seen that the dimensions 

of the two trapezoids and two triangles are the same in each figure but when calculating the areas 

using the side lengths of each shape, the area of the square is 13 ∙ 13 = 169 units2 but the area of 

the rectangle is 21 ∙ 8 = 168 units2. No matter what two Fibonacci numbers are chosen, the areas 

will always differ by one unit (sometimes the square will be larger and sometimes the rectangle). 

 

        

 

 

 

 

 

 

     If the same problem is reconsidered with a different additive “series” though (really a finite 

sum), the areas will be exactly equal and the paradox disappears. Given what is known as the 

“golden series,” viz., 1, φ, 1 + φ, 1 + 2φ, 2 + 3φ, 3 + 5φ…, the exercise is repeated below. 

  

 

 

 

 

 

 

     The area of the square is 1 + 2φ + φ2 = 1 + 2φ + φ + 1 = 3φ + 2 and the area of the rectangle is 

2φ2
 + φ = 2(φ + 1) + φ = 2φ + 2 + φ = 3φ + 2. Each area is precisely 3φ + 2. It turns out the golden 

series is the only additive series where the areas match exactly! 
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       The series 1, φ, 1 + φ, 1 + 2φ, 2 + 3φ, 3 + 5φ… has another fascinating property when 

comparing its terms to corresponding terms of the sequence 1, φ, φ2, φ3, φ4, φ5…, 

 

                                                                 1 + φ = φ2 

                                                                                               1 + 2φ = (1 + φ) + φ 

                                                                           = φ2 + φ 

                                                                           = φ(φ + 1) 

                                                                           = φ(φ2) 

                                                                           = φ3 

                                                               2 + 3φ = 1 + 2φ + 1 + φ 

                                                                           = 1 +2φ + φ2 

                                                                                                    = (1 + φ) (1 + φ) 

                                                                           = φ4 

                                                                3 + 5φ = 2φ + 3φ + 3 

                                                                           = 2φ + 3(φ + 1) 

                                                                           = 2φ + 3φ2 

                                                                           = φ(2 + 3φ) 

                                                                           = φ5 

… 

 
       Since each set of corresponding terms is equivalent, the series 1, φ, φ2, φ3, φ4, φ5… is equal to 

the golden series!  

     Recalling that φ’ is also a solution to the original quadratic equation, 2 1 0x x   , an 

analogous relationship can be observed between the following two series: 

 

                                      1, φ’, 1 + φ’, 1 + 2φ’, 2 + 3φ’, 3 + 5φ’… and  

                                                             1, φ’, φ’2, φ’3, φ’4, φ’5… 
 

       Because φ’ is negative, these two series have positive first terms and then alternate between 

negative and positive terms.  
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IV. THE GOLDEN RECTANGLE 

The most straightforward and frequent experiences that human beings have with the Golden Ratio 

involve golden rectangles. In fact, it is likely that most people on Earth, whether they are aware or 

not, engage with golden rectangles numerous times each day. A golden rectangle, in the very 

simplest sense, is a rectangle where the ratio of the length, i.e., the longer side, to the width is equal 

to the Golden Ratio, the most obvious example, shown below, being a rectangle with a length = φ 

and width = 1. Therefore, the ratio of the length to the width is : /1AB AD    .  

                                            

 

 

 

 

 
 

       Two rather ordinary examples of the appearance of golden rectangles in everyday life are 

credit cards and light switch covers. Rounded to the nearest tenth, the ratio of the length of a credit 

card to its width is 4.5 inches/2.75 inches ≈ 1.6 and the ratio of the length of a standard light switch 

cover to its width is 3.375 inches/2.125 inches ≈ 1.6, both quite close to the value of φ which, as 

shown previously, is also approximately 1.6. Although this might seem like a strange coincidence, 

many people believe that golden rectangles are so ubiquitous in human life because their 

proportions just look “right.” Since at least the time of the early Greeks, rectangles with these 

proportions have been thought to be “the most pleasing and beautiful rectangles” and have been 

used by humans to design everything from everyday objects that we barely think about to cultural 

monuments that have survived for thousands of years. While golden rectangles show up in many 

familiar and even mundane places, they also show up in countless extremely interesting and often 

surprising places. Though the rectangle above may appear unremarkable, the features of its 

composition and proportions alone have been a mathematician’s treasure trove for millennia.  
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      A golden rectangle can easily be constructed with straightedge and compass as shown in Figure 

4.1 below. Beginning with square ABCD, side AB is bisected by point E. Extend side AB and side 

DC. Then with E as center, open a compass the length of CE and draw an arc from C intersecting 

the extension of AB to produce point F. Draw FG perpendicular to DC intersecting the extension 

of DC at point G. The golden rectangle is the quadrilateral AFGD.  
 

Figure 4.1 

 

 

                                        

                                                   a 

 

 

 

To prove that the proportions are correct, let AD = a. Then by the Pythagorean Theorem,  

EC = EF = 
5

2
a . AF/FG = (AE + EF)/FG = 

1 5 1 5
/

2 2 2
a a a


    ∎       

        

     Since this ratio is equal to φ, AFGD is definitely a golden rectangle but a really incredible fact 

is that the smaller rectangle CBFG is also a golden rectangle! It turns out that no matter how many 

times a square is lopped off of a golden rectangle, the resulting quadrilateral will always be another 

golden rectangle. There will be more about this property in the following sections. 
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V. ARCHITECTURE & DESIGN 

The perception of beauty is not easily apprehended or explained but since at least the time of the 

ancient Greeks, there has been a widely held belief that beauty relates to a particular type of 

symmetry and specific proportions between the part and the whole. According to Huntley, this 

perception is a psychological experience, part of which is primordial, and part of which is learned. 

He claims that “aesthetic appreciation is consummated in two stages, the first through intuition, 

the second through education” [4, p68]. Analyzing the intuitive aspect is challenging but Huntley 

has a special interest in, and particular patience for, exploring this topic. He suggests that inherent 

experiences of beauty could be related to certain parameters of perception, an aspect of familiarity, 

or maybe even the collective unconscious.  

      In architecture and design, the Golden Ratio and golden rectangles make quite frequent 

appearances. It is possible that this is not always deliberate, but the particular enthusiasm of the 

ancient Greeks for the Golden Ratio leads many historians to believe that φ was intentionally 

incorporated into the design of the Parthenon of Acropolis, pictured below. The Parthenon was 

built in the city-state of Athens during the Classical Age as a temple to celebrate the defeat of 

Persian invaders, and as a cultural symbol. Despite heavy damage due to fires, wars and 

earthquakes over the centuries, the Parthenon still stands today and is visited by millions of people 

each year. It is considered to be one of the world’s most important historic monuments. 

 
 

[Figure 5.1. Photograph of Parthenon of Acropolis by Colin Dixon. Downloaded from 
https://explorethistown.com/what-is-the-parthenon-restoration-all-about/, June, 2020] 
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       Construction of the Parthenon, ordered by the Greek statesman Pericles, began in 447 BCE 

and continued until 438 BCE. The Greek sculptor, Phidias, for whom φ is named, was among the 

architects and artists who designed the ancient temple. Depending on how measurements are taken, 

admittedly many of the ratios investigated appear to be only close to the Golden Ratio. From this 

error, sophisticated arguments have been presented, disputing the intentional use of φ in the design. 

While mathematical scrutiny may lead to a measure of doubt, a visual appraisal of the floor plan, 

reveals that the proportions of both the friezes and overall structure, are at minimum quite close to 

golden proportions. The arithmetic exposes errors of up to two or three percent but this discrepancy 

may not be detectable by the human eye. Golden rectangles, or at least approximations of, can be 

observed in several locations of the Parthenon’s floor plan. Two obvious examples are shown in 

the diagram below. The ratio of the length to the width of the larger gold rectangle is 44.38 

meters/28.62 meters ≈ 1.6 and the ratio of the length to the width of the interior chamber or 

“Cella,” represented by the smaller light gold rectangle, is 29.89 meters/19.19 meters ≈ 1.6.    

 

 

 

   

 

 

 

 

[Measurements from http://athang1504.blogspot.com/2011/01/parthenon.html, 2020] 
 

        A more compelling example of a golden rectangle might be observed in the entablature frieze 

on the exterior of the Parthenon. The metopes are plaques carved from marble that compose the 

ornamentation of the Parthenon above the Doric columns. Each side of the Parthenon has a 

different theme but all of the metopes depict war images. The master artist responsible for the 

creation of the metopes is thought to have been Phidias. The following image is of the eastern face 

of the Parthenon. Metopes on this side symbolize Gigantomachy which has to do with the battle 

between Olympian gods and the aggressive Giants. Each metope has a section beside it called a 
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triglyph that looks like three miniature columns. The ratio of the length of one metope, designated 

in blue below, to the width is equal to approximately 1.618 and just like the golden rectangles in 

the previous section, once a line is draw separating the square metope and the rectangular triglyph, 

the resulting rectangle is also a golden rectangle. 

 

 

 

 

 

 

 

 

 

 

[Figure 5.2. Photograph of East Front of Parthenon by David Gill. Downloaded from 
http://davidgill.co.uk/attica/parthenon/parthenoneastfro.html in June, 2020] 
 

      The most obvious indication of the Golden Ratio in the Parthenon’s architecture is on the actual 

face of the structure. As can be observed in the computationally enhanced photograph below, the 

ratio of the overall length to the height is equal to φ!  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 5.3. Photograph of The Parthenon of Acropolis. Downloaded from  
https://www.okeanosgroup.com/blog/ aquariums/1-618 in June, 2020] 
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      One of the most impressive and easily recognizable buildings in the world is the Taj Mahal in 

Agra, India. The Taj Mahal was built by Emperor Shah Jahan after the death of his favorite wife, 

Mumtaz Mahal, in 1632. Construction of the main building, built as a mausoleum, was completed 

in 1643 while work on the ornamentation of continued for about five additional years. The Taj 

Mahal is constructed from ivory-white marble with beautiful domes, intricate design work, 

calligraphy, stone inlays, bronze detailing, carvings, splendid gardens, and many other opulent 

design elements consistent with Persian and Mughal architecture. Like the Parthenon, the Taj 

Mahal is visited by millions of people from around the world each year; in 2007, was named one 

of the Seven New Wonders of the World. In addition to the lavish materials and exquisite details, 

the design features thought to make the Taj Mahal so visually attractive are: that each element of 

its design can stand alone while integrating flawlessly with the whole, that self-replicating 

geometry contributes to a sense of visual coherence, and that its symmetry of elements has a 

universal aesthetic appeal.  

     The Golden Ratio makes countless appearances in the design of the Taj Mahal and is an 

important element of the self-replicating geometry mentioned above. Golden rectangles compose 

the face of building which can be seen in the photograph below. The main entrance and windows 

are all geometrically similar rectangles with the proportion of length to width approximately equal 

to φ. The use of golden rectangles in the design of the building is well known and is widely 

accepted to be one of the major reasons that the Taj Mahal is so aesthetically pleasing. 

 

 

 

 

 

 

 
 
 
[taj- mahal.com in June, 2020] 
 

[Figure 5.3. Photograph of The Taj Mahal 
by Andrés Lorenzo. Downloaded from 
andréslorenzo-taj- mahal.com in June, 2020] 
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       More modern examples of the Golden Ratio in architecture can be observed in the work of 

architects, Frank Lloyd Wright and Le Corbusier. Frank Lloyd Wright was an American architect, 

designer and teacher born in 1867, and Le Corbusier was a Swiss-French architect, designer and 

writer born in 1887. Both men had long careers. Frank Lloyd Wright designed structures that 

include elements of nature and are intended to be in harmony with the natural world. Le Corbusier 

worked in urban planning and was dedicated to improving living conditions in crowded cities. He 

had a particular interest in proportion as a theory of design. 

      Several examples of the Golden Ratio appear in the architecture of Frank Lloyd Wright. A 

study of Wright’s Roloson Row Houses in Chicago reveals that both the façade and the floor plan 

of a single row house are in the exact proportions of a golden spiral which because it has a growth 

factor of φ, is directly related to the Golden Ratio. A better-known example of a golden spiral in a 

Lloyd Wright building can be seen in the design of the Solomon R. Guggenheim Museum in 

Manhattan which is pictured below. Exactly how the golden spiral, which also appears in the 

natural world, is related to the Golden Ratio will be discussed in Section VIII. 

 
[Figure 5.4. Photograph of The Solomon R. Guggenheim Museum by Andrew Pielage. 
Downloaded from https://ny.curbed.com/2019/10/18/20920836/nyc-museums-guggenheim-
frank-lloyd-wright-architecture in June, 2020] 
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       Though it is uncertain whether or not Frank Lloyd Wright intentionally, or only coincidentally, 

incorporated the Golden Ratio into his designs, Le Corbusier certainly did use it intentionally. He 

developed a universal measuring system which he called the “Modulor.” This system is explicitly 

based on the Golden Ratio and the proportions of the human body. These proportions were 

standardized and used throughout his construction projects. In the image below, the ratio of the 

second vertical section to the first is φ and the ratio of the third vertical section to the second is 

also φ. There are many other manifestations of the Golden Ratio in this image as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 5.5. Photograph of The Modulor by Le Corbusier. Downloaded from 
https://www.library.ethz.ch/en/ms/Virtual-exhibitions/Fibonacci.-Un-ponte-sul-Mediterraneo/ Re 
ception-of-Fibonacci-numbers-and-the-golden-ratio/Le-Corbusier-the- Modulor# in June, 2020] 
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     It should be noted that the principle of the explicit use of the Golden Ratio and human 

proportion in architecture was not new but rather was explained as early as the first century CE by 

Roman architect and engineer, Marcus Vitruvius Pollio, in his multi-volume work, De 

Architectura [18, p508]. Le Corbusier’s conceptual system, however, has an undeniable 

streamlined appeal, and widespread accessibility which has made him one of the most influential 

modern theorists on the topic.  

     An example of Le Corbusier’s design can be seen in the photograph of his Unite d’Habitation 

housing complex in Marseilles, France built in 1952 and pictured below. On the façade of the 

building, two golden rectangles, one colored orange and the other yellow, can be easily observed 

side by side. This design element appears not only on the façade but throughout the design of the 

housing complex. Le Corbusier believed that repeated use of the golden rectangle as a design 

element creates harmony and unifies a structure. Because the Golden Ratio is based on the 

proportions of the human body, the proportions of the spaces he designed are appropriately 

proportioned to contain human bodies. 

 

 

 

 

 

 

 

 

 

 

 

[Figure 5.6. Photograph of Unite d’Habitation. Downloaded from https://archi-
monarch.com/theory-of-proportion/ in June, 2020] 
 

 

     Le Corbusier designed dozens of buildings around the world that incorporated his Modular 

system. One more specific example is his United Nations Secretariat Building in New York. The 

face of the building, which is even featured in a Donald Duck movie about the Golden Ratio, is 

said to be composed of three golden rectangles stacked on top of each other. When the dimensions 
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of the building are used to confirm that these three rectangles are in fact “golden,” there is an error 

of about two percent. Critics exploit this error to “debunk the myth” that the Golden Ratio was 

used in the design, however, it should be noted that there are other parameters to consider when 

designing a large building. That Le Corbusier developed an entire system of measurement around 

the Golden Ratio leaves little doubt that he used it intentionally in his designs. 

     These are only a very few examples of countless uses of the Golden Ratio in architecture. There 

are many other fascinating designs that incorporate the Golden Ratio, golden rectangles, and 

golden spirals that will be left to the reader to explore. One final image shown below, included for 

its exceptional aesthetic appeal, is the Bramante Staircase at The Vatican Museum. This elegant 

golden spiral staircase was designed by Italian architect and engineer, Giuseppe Momo in 1932. 

Since one side of the staircase goes up while the other goes down, the design appears to be inspired 

by the double helix structure of DNA, however, the structure of DNA was not discovered until 

1953! 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[Figure 5.7. Photograph of A Staircase at the Vatican. Downloaded from 
https://archiMonarch.com/theory-of-Proportion/ in June, 2020] 
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VI. ART 

In art, like architecture, the Golden Ratio makes many appearances; these appearances occur 

throughout various art movements but are most prevalent during the Renaissance. The 

intentionality of a particular artist’s use of the Golden Ratio is a topic of serious critical debate and 

a subject of extensive research. In the article, “On the Application of the Golden Ratio in the Visual 

Arts,” Roger Herz-Fischler states that the only way to determine for certain that the Golden Ratio 

was used intentionally is with “documentary evidence that [an] artist used the Golden Ratio as a 

theoretical basis of his work” [6, p31]. He also points out that the Golden Ratio (in the form 1: φ) 

is very close to the value of the “simple proportion 5/8” or as the exact decimal, 0.625, which of 

course is a rational number and quite different from the irrational repeating decimal, phi. Although 

Herz-Fischler’s point is well taken, viewing and discussing works of art considered to be, or only 

possibly, influenced by golden proportions seems essential to any investigation of how the Golden 

Ratio manifests in human culture.  

     The figure most prominently associated with the Golden Ratio is Leonardo da Vinci. Da Vinci 

is considered to be the greatest genius of the Renaissance (1300 ‒ 1600 CE) and, some say, possibly 

of all time. He was an Italian polymath born in 1452 who exceled in art, science, mathematics, 

anatomy, architecture, music, and literature. Appearances of the Golden Ratio in da Vinci’s work 

are thought to be numerous. A few well-known examples can be observed in his very famous 

paintings, the Mona Lisa, Annunciation, and The Last Supper, as well as in his Vitruvian Man 

drawings. Da Vinci was responsible for creating 60 illustrations in Luca Pacioli’s book, De Divina 

Proportione, believed to have been written around 1498 but not published until 1509. As the title 

implies, the subject of De Divina Proportione is mathematical and artistic proportion, specifically 

the “divine” or golden proportion. While da Vinci’s work with Pacioli might not stand up to the 

level of scrutiny required by Herz-Fischler of “documentary evidence” related to the use of the 

Golden Ratio in a specific work of art, da Vinci certainly would have been extremely 

knowledgeable about the divine proportion and likely was an expert with respect to its use in art 

and design. That the Golden Ratio did provide a theoretical framework for some of da Vinci’s 

compositions is a widely held opinion that seems probable considering da Vinci’s relationship to 

Pacioli’s book. 

     The Mona Lisa is the most easily recognized portrait of all time. There are differences in 

opinion about when da Vinci completed the painting but it was sometime in the early 1500s during 



31 
 

the High Renaissance. The Mona Lisa is on permanent display at the Louvre in Paris and is viewed 

by over 10 million people each year. The images shown below depict two different ways that the 

Golden Ratio expresses itself in the portrait. The first shows a golden spiral beginning at the nose, 

framing the subject’s face and continuing to her left wrist. In the second, a golden rectangle frames 

the face and the grid lines emphasize the symmetry inherent in the composition. 

 

 

 

 

 

 

 

 

 
 
 
 
[Figure 6.1. Computationally enhanced image of the Mona Lisa. Downloaded from 
https://thefibonacci sequence.weebly.com/mona-lisa.html in July, 2020] 
 

 

 

 

 

 

 

 

 
 
 
 
 
[Figure 6.2. Computationally enhanced image of the Mona Lisa. Downloaded from 
https://www.research- //gate.net/figure/Golden-Ratio-example-on-The-Mona-Lisa in July, 2020] 
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     Similarly, an image of da Vinci’s The Last Supper, completed in the 1490s, can be 

computationally analyzed using technology to locate the numerous golden rectangles in his design. 

These rectangles provide structure, harmony and consistency to the composition. This painting is 

also known for its exceptional use of one-point perspective which emphasizes the importance of 

Christ, the central figure. Despite ongoing restoration efforts, the The Last Supper has deteriorated 

significantly since it was completed, but it is still one of the best-known paintings of all time and 

is considered to be a masterpiece of the High Renaissance. 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 6.3. Computationally enhanced image of The Last Supper. Downloaded from 
https://www.goldennumber.net/art-composition-design/ in July, 2020] 
 

     A more modern painting, completed in 1955, is Salvador Dali’s Sacrament to the Last Supper, 

pictured on the next page. Not only does this painting utilize the golden spiral for its overall 

proportions, the background consists of an oversized dodecahedron, one of the five Platonic solids, 

whose 12 faces are each created by a regular pentagon. The Platonic solids, which have been 

known since at least the time of the Pythagoreans, have profound and important connections to the 

Golden Ratio and will be discussed in Section X. Dali was known to have a keen interest in 

mathematics and his use of the Golden Ratio is considered to be deliberate. 
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[Figure 6.4. Computationally enhanced image of the Sacrament of the Last Supper. Downloaded 
from http://studio.education/en/learning-community/blog/554-the-art-and-science-of-1-6180339 
8875 in July, 2020] 
 

     Sandro Botticelli was early Renaissance painter who likely used the Golden Ratio in the 

composition of his work. His most famous painting, The Birth of Venus, was completed in 1485. 

The image below shows that the ratio of Venus’s 

height to the distance to her navel is equal to φ. The 

three colored rectangles emphasize that these 

measurements can be taken at different locations 

however each iteration pictured produces a golden 

rectangle. Further evidence that Botticelli 

intentionally used the Golden Ratio comes from the 

fact that the canvas itself is a golden rectangle. The 

ratio of the height to the width is approximately 

1.617, within one percent error of φ. 

 

 

 

[Figure 6.5. Computationally enhanced image of the 
The Birth of Venus. Downloaded from http://www.  
goldennumber.net/art-composition-design/ in July, 
2020] 
 



34 
 

       Raphael’s painting, The School of 

Athens, is shown to the left. The graphic 

image below the painting is the result of 

a computer analysis revealing how the 

artist embeded golden rectangles into the 

design using a more subtle technique than 

with the previous examples. In viewing 

the painting, it is more challenging to 

consciously identify how the  Golden 

Ratio is used but since from nueroscience 

it is known that aesthetic perception 

occurs in only a small fraction of a 

second, a positive response to the 

qualities of order and harmony can occur 

without necessarily consciously knowing 

that the golden rectangles are embedded 

in the composition. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

[Figure 6.6. Photograph of The School of Athens and digital analysis of painting. Retrieved from 
https://www.goldennumber.net/raphael-golden-ratio-in-renaissance-art/ July, 2020] 
 

     While the majority of the paintings already noted are from the Renaissance, golden proportions 

have been used in works from other time periods as well. In response to the writings of Vitruvius 

Pollio, the tradition of applying a theory of proportions as a basis for design “flourished in the 

Italian Renaissance” [4, p211]. This is why the movement provides such a multitude of expository 

examples, but before discussing a few modern pieces, it is essential to consider the work of just 

one more very important Renaissance artist.   

     In addition to da Vinci and Raphael, Michelangelo is considered to be one of the three masters 

of the High Renaissance (early 1490s ‒ 1527 CE), and the view that he is actually the greatest artist 

of all time is held by many. Michelangelo was an Italian painter, sculptor, architect and poet born 
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in 1475, a true Renaissance Man, whose genius parallels that of da Vinci. His most famous works 

are the Genesis frescoes on the ceiling of the Sistine Chapel and his sculpture, David. Michelangelo 

had a vast and deep knowledge of anatomy, which he obtained in part by dissecting human 

cadavers. The Creation of Adam, pictured below, is the best-known fresco of the Sistine Chapel. 

There is a commonly held belief that Michelangelo embedded hidden religious messages in the 

Sistine Chapel frescoes. One conjecture is that the The Creation of Adam shows that humans do 

not receive life from God but rather the intellect, which is the divine part. A hypothesis that the 

drape-like object surrounding the God image, on the right, is actually the “sagittal section of the 

human brain” [2, p2] supports this theory. The Golden Ratio appears in the relationship between 

the right edge of the fresco and the tip of God’s finger and the left edge of the fresco and the tip of 

Adam’s finger. A research project using “Image Pro Plus” software to analyze these two distances, 

and others in the frescoes of the Sistine Chapel, reveals that the ratio of God’s distance, the longer 

section, to the ratio of Adam’s distance is the divine proportion [2, p3]. The same project also 

detected over two dozen other appearances of the φ in Michelangelo’s Genesis frescoes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 6.7. Digitally analyzed photograph of The Creation of Adam. Downloaded from 
https://www.Creation-of-Adam-Campos_et_al-2015-Clinical_Anatomy, 2020] 
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        Michelangelo’s David, shown below, is a marble statue, depicting the figure, David, from the 

Biblical story of David and Goliath. David is currently on display at the Galleria dell'Accademia 

in Florence, Italy. Michelangelo was awarded the commission to work on the statue, which took 

two years of continuous work to complete, when he was only 26 years old. Because of its beauty, 

perfect proportions, and excellence of form, David was 

immediately recognized as a masterpiece.  Like Botticelli’s 

Venus, the ratio of David’s overall height to the distance to his 

navel is equal to the Golden Ratio. More importantly, at least 

with respect to the perfect male physique, the ratio of the 

circumference of David’s shoulders to the circumference of his 

waist is also equal to the Golden Ratio. A 2007 study published 

in the Archives of Sexual Behavior finds that, for women, a 

shoulder to waist ratio of 1.6 is a very strong predictor of the 

sexual attractiveness of men [20, p1]. Numerous body-building 

programs, including one appropriately called the “Adonis 

Golden Ratio” program promote working toward this ratio as a 

primary goal to increase attractiveness. 

[Figure 6.8. Photograph of David. Retrieved from https://springsemester2015artz363. 
wordpress.com/proportion-scale/ in July, 2020] 
 

     Piet Modrian was a Dutch artist born in 1872. His early work is traditional, including landscapes 

and portraits, but he later became a pioneer of abstract art. He, along with  Theo van Doesburg, 

founded the Di Stijl Movement (also called Neoplasticism) 

which they began in 1917 and has been very influential in 

art, design and architecture. His Composition with Red, 

Yellow, Blue and Black (Figure 6.9) was produced in 1921.  
 
 

[Figure 6.9. Composition with Red, Yellow, Blue and Black. 
Retrieved from http://www.widewalls.ch/mag 
azine/golden-ratio-examples-art-architecture-music/ 
georgeus-seurat-golden-ratio in July, 2020] 
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     Modrian limited his use of color to the primary colors, along with the values white, gray and 

black. He limited the forms to vertical and horizontal lines and rectangular forms. His style avoids 

symmetry but uses design elements to achieve balance. Composition with Red, Yellow, Blue and 

Black, like many of his abstract compositions, uses recurrent rectangles in its design, three of which 

have their ratios of length to width approximately equal to 1.6. Modrian was known to be interested 

in the connections between art, logic, and mathematics but whether or not he would have used the 

Golden Ratio intentionally is controversial. 

     In the final examples shown below, the Golden Ratio does make intentional appearances. John 

Edmark is an artist, designer and mathematician who currently teaches at Stanford University. 

Several of his nature-influenced sculptures use the Golden Ratio as a primary source of inspiration. 

His work goes beyond a theory of proportions to making explicit connections between 

mathematics and biological phenomena. Curling Spiral, Outer Spine, below left, is a depiction of 

a golden spiral that can unwind itself. The sculptures on the right are referred to as Blooms 

sculptures. They intentionally use a golden angle (approximately 137.5 degrees) to maximize the 

number of leaves that can be arranged around a central stem. Edmark appropriates the golden angle 

from nature where it is known to optimize access to limited resources. The appearance of the 

Golden Ratio in biology is one of the most astounding and will be discussed in greater detail in 

Section VIII. 

[Figure 6.10. Curling Spiral, Outer Spine and examples of Blooms sculptures. Retrieved from 
https://www.instructables.com/id/Curling-Spiral-Kinetic-Sculpture/ and from http://   www 
johnedmark.com/ in July, 2020] 
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VII. MUSIC 

In the areas of art and architecture, the Golden Ratio is perceived by seeing, but this next section 

will show that the Golden Ratio can also be perceived by hearing. Just like in the visual arts, the 

Golden Ratio has been used to create a kind of structure in a musical composition. Including φ as 

an element of an arrangement creates a limitation that helps to serve as a template. There are many 

examples of composers using Golden Ratio-like intervals in musical pieces. As in other disciplines, 

it is expected that a number of these uses are coincidental, but the possibility that some musicians 

make use of the Golden Ratio, and especially the related Fibonacci sequence intentionally will also 

be considered. 

       Definition 3 in Book VI of Euclid’s Elements, presents Euclid’s definition of the Golden 

Ratio: “A straight line is said to have been cut in extreme and mean ratio when, as the whole line 

is to the greater segment, so is the greater to the lesser.” The Golden Ratio is defined by the 

analogous relationship between the whole line to the longer section, and the longer to the shorter 

section. This relationship characterizes the most easily comprehended way that the Golden Ratio 

manifests in a musical composition and is illustrated by the following diagrams. 

 

 

                                                                                         or 

 

      

     In a composition that uses the Golden Ratio as a structural element, there is a longer section, 

followed by the climax of the piece, and then a shorter section; the ratio of the longer to the shorter 

being approximately equal to φ (or vice versa). This sounds simple enough but unlike in art or 

design, where an entire composition can be perceived simultaneously, a musical arrangement is 

perceived over time. What makes the appearance of the Golden Ratio in music so fascinating is 

that the human brain seems to have the ability make a judgment about this climax happening at a 

desirable point in a song even though perception takes place over a duration and the relationship 

between the part of the song that occurs before the climax and the part that occurs after is not 

evident until the song is over. That the brain is able to perceive in this way leads to very interesting 

questions about the possibility of a preference for this type of proportional relationship having a 
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biological, or evolutionary basis, and also about how aesthetic appraisals are made with respect to 

music.  

     In addition to compositions utilizing the Golden Ratio, it is also associated with musical 

instruments themselves. Stradivarius violins are among the most renowned instruments in the 

world. The superiority of a Stradivarius’ tone quality is well established and has been extensively 

studied by physicists associated with some of the world’s most prestigious universities. Theories 

have been proposed that the sound is enhanced by the instrument’s shape, the size of its ‘f’ holes, 

a particular recipe of varnish, or even by certain imperfections. With respect to its shape, a 

Stradivarius violin incorporates several proportions that are equal to the Golden Ratio. These 

relationships are shown in the diagram below. To what degree, if any, the Golden Ratio is 

associated with the excellence of the violin’s sound is an elusive matter that cannot easily be 

determined but is certainly an interesting topic of investigation. 

      

      

      

 

 

 

 

 

 
 

 

 

[Figure 7.1. Photograph of Stradivarius Violin. 
Retrieved from https://www.classic fm.com  

/lifestyle/wellbeing/what-makes-stradivarius-violin-
amazing/ in July, 2020] 
 

     Recalling that the Fibonacci sequence consists of the numbers, 1, 1, 2, 3, 5, 8, 13, 22, 34…, 

consider as another example, an octave on a piano. An octave describes the distance between a 

particular note and the next time that the same note repeats. The word “octave” is derived from the 

Latin word for eight. A full piano has 88 keys spanning seven octaves. One octave, shown below, 
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consists of 13 total notes with 8 white keys and 5 black keys. This, of course, may only be a 

coincidence but interestingly, 13, 8 and 5 are all Fibonacci numbers! 

 

 
 
            
 

 

 

 [Figure 7.2. Piano keyboard. Downloaded from https://www.musikalessons.com/blog/ 2016 
/08/piano-keys-chart/ in July, 2020] 
 

         When Wolfgang Amadeus Mozart was only 18 years old, he began writing 19 different piano 

compositions which were all in sonata form. A composition of this type has two parts called the 

“Exposition,” and the “Development & Recapitulation.” 

Analysis of the length of the whole composition to the longer 

part of each sonata reveals that all of the proportions are 

approximately equal to 1.6. Each data point on the graph to the 

left represents the total length of a composition on the x‒axis 

and the length of its Development & Capitulation on the y‒axis.  

 

     The red line shown on the graph is the line, 
1

y x


 . As can immediately be observed from the 

graph, all of the data points are very close to the line. While the presence of the Golden Ratio in 

this relationship is undeniable, that Mozart used it deliberately is uncertain. Some scholars believe 

[Figure 7.3. Graph by John Putz. https://www.yumpu 
 com/en/document/read/40898694/the-goldensection 
 and-the-piano-sonatas-of-mozart-john-f-putz, 2020] 
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that it was rather his innate sense of proportion that is responsible for the similar ratios of the whole 

to the part in each sonata, arguing that Mozart would not have needed to implement a methodology 

when he possessed such exceptional intuition [18, p280]. 

        Frédéric Chopin, known as Poland’s greatest and most popular composer, is often referenced 

when considering musical pieces with 

connections to the Golden Ratio. A 

frequently cited example is Chopin’s 

Prelude in C Major, Op. 28, No. 1. The 

culmination of the piece occurs at the 21st 

measure, outlined in red below. The 

composition consists of a total of 34 

measures with the climax taking place 

almost exactly at the golden mean since 

34/21 ≈ 1.619. That 34 and 21 are both 

Fibonacci numbers again raises the 

interesting question of intentionality vs. 

coincidence. Skeptics point out that 

Chopin died (at the young age of 39) in 

1849 but the Fibonacci numbers were not 

well-known until the 1870s. 
 

[Figure 7.4. Chopin’s Prelude in C Major, Op. 28, No. 1. Downloaded from 
https://www.mi.sanu.ac.rs/vismath/jadrbookhtml/part42.html in July, 2020] 
 
       Other examples of musicians thought to have used the Golden Ratio in their work are French 

composer, Claude Debussy, and one of the most influential composers of the 20th century, 

Hungarian pianist, Béla Bartók. Three piano pieces by Debussy with golden proportions include 

Mouvement, Hommage à Rameau, and Reflets dans l'eau.  Two works by Bartók where the Golden 

Ratio appears are the Sonata for Two Pianos and Percussion, and Mikrokosmos. Bartók who was 

influenced by DeBussy and also by French composer, Maurice Ravel, believed that music is deeply 

connected to nature and compared musical compositions to living organisms such as trees and 

animals. Musicologist, Ernö Lendvai, explains that Sonata for Two Pianos and Percussion is a 

particularly good example because it uses the Golden Ratio in both small components and in a 

        Prelude in C Major, Opus 28, No.1 
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broader way. As was discussed previously, a composition can be divided into two parts whose 

durations are proportionally related according to the Golden Ratio, but two individual notes can 

also be related by a golden proportion. Ratios of frequencies create notes and the key frequencies 

known in Western music are composed of ratios of the first seven Fibonacci numbers. 

     There is an old folktale that Pythagoras, upon hearing the pounding of a blacksmith’s hammers, 

went running into his shop to discover that the sounds he was hearing were relative to the weights 

of the blacksmith’s hammers, i.e., that there was a proportional relationship between the weight of 

each hammer and the musical note produced. Allegedly, there were four hammers, A, B, C, and D. 

Most combinations of two hammers produced consonance but the combination of hammers B and 

C produced dissonance. This story was first told by ancient Greek mathematician, Nicomachus, 

and has been repeated for centuries. It has since been determined that Nicomachus’ account does 

not really stand up to scrutiny; however, Pythagoras is credited with being the first to perceive the 

intimate and important connections between music and mathematics. Huntley explains that 

Pythagoras “noted the curious fact that the lengths which emitted a tonic, its fifth and its octave 

were in the ratio 2: 3: 4” [7, p23]. Pythagoras believed that harmony in music could only come 

from nature and that it must be related to mathematical proportions. 

       Discussing music, as opposed to listening to it, certainly has its limitations, but this overview 

has introduced to readers how the Golden Ratio reveals itself in relationships between musical 

notes, in instruments themselves, and in the structures of compositions. It is well-known that some 

compositions are pleasant to listen to while others are not. Researchers have suggested that a piece 

can sound unpleasant if inconsistency is detected, e.g., if Fibonacci numbers or golden proportions 

are used throughout the piece and then a change in structure occurs, a part of the song might sound 

unpleasant, or out of place. Huntley proposes that what is pleasing to the ear is likely connected to 

nature. He says “intervals of music acceptable to the human ear might be the same as those first 

offered to ancestral man by birds” [7, p18]. Huntley’s suggestion provides the perfect segue to the 

next section where the discussion of the manifestations of the Golden Ratio in nature will certainly 

be surprising and most impressive. 
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VIII. THE NATURAL WORLD 

The relationship of the Golden Ratio and the Fibonacci numbers to the natural world is so 

absolutely stunning that natural science is really the only discipline where an investigation of φ 

might be as fascinating as it is in mathematics itself. The Pythagoreans began to discover surprising 

patterns and designs in nature and believed that understanding the meaning of symbols through 

mathematics is the key to comprehending the universe. 18th century Prussian geographer and 

naturalist Alexander von Humboldt expressed concern that the examination of nature’s innate 

qualities would compromise the magic and dignity of the natural world, but French mathematician 

and philosopher of science Henri Poincaré contends that man, does not study nature “because it is 

something useful [but rather because it is] joyful and he finds it joyful because it is so beautiful” 

[12, p99]. This author’s opinion is that discovering and exploring the secrets of nature leads to a 

deeper appreciation of its beauty and complexity and is an important impetus for the critical, often 

political, work that must be done to preserve its magnificence.  

      In studying the natural world, the ancient Greeks began to notice that the same mathematical 

laws applied to numerous phenomena in biology, astronomy, music, and human anatomy. The 

relationships between these phenomena became apparent which particularly fascinated the 

Pythagoreans and fueled their desire to make explicit connections between mathematics and such 

things as the earthly elements, celestial bodies, the Platonic solids, the human body, and the signs 

of the zodiac. In the 2018 paper, “Mathematical Determination in Nature‒The Golden Ratio,” the 

authors describe one such example: 
 

Pythagoras, together with his followers, constructed a regular pentagon based on 

their knowledge of the Golden intersection. They called it Health and strongly 

believed that it represented a pure mathematical perfection. They connected health 

of the human body directly with the mathematical harmony in the Golden 

intersection. [8, p125] 

 

    A thousand years later, in ancient Rome, a similar philosophy still prevailed. The Roman 

statesman, mathematician, and philosopher, Boethius, believed that the body and soul are in 

accordance with the very same mathematical proportions as the Cosmos. Boethius was thought to 

be an intermediary between the ancient and modern worlds. Interestingly, the Golden Ratio plays 
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an important role in the training of modern-day doctors, especially cardiologists, plastic surgeons 

and even dentists. 

      Golden proportions, golden angles, and the Fibonacci sequence appear in thousands of 

organisms and natural phenomena as well as in the Cosmos itself. New manifestations continue to 

be discovered each year. In his paper, “The Golden Section and Beauty in Nature,” Ulrich Lüttege 

explains that the Golden section “has an important organizational role” in nature and claims that 

“the golden angle optimizes the packing of molecules such as seeds and fruits” [12, p98]. A golden 

angle is created by dividing the central 360-degree angle of a circle into two angles such that the 

ratio of the measure of the larger to the smaller is equal to the ratio of the measure of the whole 

circle to the larger angle. Solving for the smaller angle, below, the measure is determined to be 

about 137.5 degrees which is the golden angle! 
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       The diagram below shows how the development in some plants exemplifies the golden angle 

for leaf placement around the stem. The plant sprouts a single leaf and then when the second leaf 

emerges, it develops approximately 137.5 degrees away from the first leaf. The third leaf then 

sprouts ≈137.5 degrees from the second leaf and this pattern continues, with the new leaf always 

≈137.5 degrees from the very last leaf that sprouted, until all of the leaves have emerged. By 

following this pattern, the plant minimizes overlap of the leaves allowing them to access as much 

sunlight and other resources as possible. This example of leaf phyllotaxis ensures that the 

arrangement will never be periodic, i.e., that any two leaves will not be in the same position around 

the plant’s stem. This arrangement may give the plant an evolutionary advantage. Examples of 

species where these arrangements are easily observable include Aeonium tabuliforme (saucer 

cactus) and Cynara cardunculus (artichoke). 

 

                                      Leaf Phyllotaxis Exemplifying the Golden Ratio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
[Figure 8.1. Diagram of the golden angle in leaf phyllotaxis. Retrieved from 
http://gofiguremath.org/natures-favorite-math/the-golden-ratio/the-golden-angle/#:~: text=Plants 
in July, 2020] 
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      A beautiful example of the Golden angle’s 

organizational role can be observed in the head of a 

common sunflower, Helianthus annuus, where fruits are 

packed very tightly. Each fruit is produced in the center 

of the floral head and then must migrate outward as new 

fruits are created. Once the first fruit moves from the 

center, the second fruit automatically develops in a 

direction that is approximately 137.5 degrees from the 

path of the first fruit. This movement continues and each 

new fruit is positioned at an angle of ≈137.5 degrees 

from the very last fruit maximizing the number of fruits 

that can be produced by a single floral head. That this 

happens at all is incredibly amazing but biologists and 

physicists also study how it happens. Since a sunflower 

does not have a computer inside of it, complex 

biochemical and biomechanical processes are 

responsible for making sure that the fruits get dispersed 

in such a highly accurate arrangement. Once the fruits are in their positions, an equiangular spiral 

pattern becomes apparent. In a sunflower, there are 21 clockwise spirals and 34 counter-clockwise 

spirals that appear to emerge from the center. Noticing that 21 and 34 are both Fibonacci numbers, 

another connection to the Golden Ratio is revealed! 21 and 34 are in fact adjacent Fibonacci 

numbers. This same pattern also occurs in daisies, but it is much easier to see in sunflowers. Many 

other organisms also have similar arrangements with spiral patterns occurring in frequencies of 

adjacent Fibonacci numbers. Two well-known examples are the composite fruit structure of 

pineapples which have eight clockwise and 13 counterclockwise 

spirals, and the arrangement of the bracts on pinecones, which have 

five clockwise and eight counterclockwise spirals. They are easiest 

to see in the pinecone, pictured left.  

 

[Figure 8.3. Photograph of Pinecone. Retrieved from https://www. 
pinterest.com /pin/11137159 59314672964/ in July, 2020.] 
                           

[Figure 8.2. Common Sunflower. 
Retrieved from http://gofiguremath. 
org/natures-favorite-math/the-golden 
ratio/the - golden-angle/:~:text=Plants 
in July, 2020] 
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         In Section IV, it was mentioned that given a Golden rectangle, lopping off a square produces 

another Golden rectangle. This process can be repeated until the resulting rectangle gets so small 

that it is reduced to a single point (Figure 8.4). If then a spiral is drawn such that it intersects each 

Golden rectangle at a vertex, as shown below, an approximation of a Golden spiral, is created 

(Figure 8.5). A Golden spiral is one particular case of a logarithmic, or equiangular, spiral. Huntley 

asserts that the Golden spiral’s exceptional elegance is perceived prior to its mathematical 

significance being recognized, suggesting that it might be the spiral’s familiarity that makes its 

form so appealing [7, p101].  
           

Figure 8.4 

 

 

 

 

 

 

 

 

Figure 8.5 

 

 

 

 

 

 

 

 

        The Chambered Nautilus (pictured on the next page) is a small marine mollusk that has lived 

largely unchanged on Earth for over 400 million years. It is the organism most likely to be 

immediately associated with the Golden spiral but its familiarity does not in any way compromise 

the sense of awe that it inspires. 
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[Figure 8.6. Photograph by Ingo Arndt. Downloaded from https://fineartamerica. 
com/featured/chambered-nautilus-cross-section-ingo-arndt.html in July, 2020] 
 

     The Chambered Nautilus, which is also called a pearly Nautilus, or simply a Nautilus, is 

considered to be a living fossil. Its species has occupied Earth longer than there have been trees. 

A Nautilus’ shell is created from chambers which house the Nautilus. As the Nautilus grows, it 

moves into larger and larger compartments that have exactly the same shape and the same 

proportions. Once it has moved out of a compartment, the area is walled off with mother of pearl, 

leaving only enough room to accommodate the Nautilus’s siphuncle, the structure that enables it 

to adjust the gas pressure in different chambers. The empty chambers are filled with air or gas to 

help it stay afloat. Nautilus mollusks currently live in the Indian and Pacific Oceans but their 

populations are dwindling due to demand for their beautiful pearly shells.  

     A Golden spiral is defined by its growth factor. For every quarter turn that a Golden spiral 

makes, it gets larger by a factor of φ. The growth factor of a Chambered Nautilus is not typically 

exactly φ but like a Golden spiral, its growth is based on a geometric progression rather than a 

constant rate. If a Golden spiral is superimposed on an image of a Chambered Nautilus, the form 

of the shell will approximately follow the curve of the Golden spiral and is much closer than it 

would be to a Spiral of Archimedes which has a constant rate of growth. The image of the two 

spirals on the next page shows that the Nautilus shell is much more similar to the Golden spiral. 
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                  Figure 8.7 Archimedean spiral                       Figure 8.8 Golden spiral 
 

 

       A Golden spiral is equiangular because for any radial line that is drawn from the center of the 

spiral to a point on the spiral, the tangent for the point and the radial line will form an angle whose 

measure is constant for all points on the spiral. This can be observed in Figure 8.8. A Golden spiral 

is a growth spiral that is also associated with other natural phenomena; a growth spiral gets larger 

while maintaining constant proportions and the same shape. French mathematician, philosopher, 

and scientist, René Descartes, was the first to describe the equiangular spiral in the year 1638. 

Swiss mathematician, Jakob Bernoulli, who also worked with the equiangular spiral, gave it the 

name spira mirabilis, Latin for the miraculous spiral, in 1692. Bernoulli was so fascinated by his 

spira mirabilis that he requested it be engraved on his tombstone but the engraver made an error 

and he instead ended up with an Archimedean spiral.  

       Messier 51a or “The Whirlpool 

Galaxy” (left) was discovered by 

Charles Messier in 1773. It is a galaxy 

76,000 light years in diameter, which is 

about 43% the size of our own galaxy, 

the Milky Way.  

        

[Figure 8.10. Photograph of 
Whirlpool Spiral. Retrieved from 
http://www.spacetelescope.org/images 
in July, 2020] 
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      Amazingly, the Whirlpool Galaxy is 23 million light years from Earth but in a dark sky, it can 

be observed by amateur astronomers on Earth using only binoculars. Like the Chambered Nautilus, 

the Whirlpool Galaxy is thought to be about 400 million years old. It is said to replicate the Golden 

spiral of the Nautilus. The arms of the spiral serve an important function compressing gas so that 

so that new clusters of stars can be created.  

     DNA contains all of the genetic instructions necessary for the development and reproduction 

of living things (including some viruses). During the early 1950s, English chemist, Rosalind 

Franklin, worked on the x-ray crystallography research which led to the discovery of the structure 

of DNA. In 1953, Francis Crick, an American biologist, and James Watson, an English physicist, 

first described the 3-dimensional double helix structure that is familiar today. DNA is composed 

of two intertwined helixes. Each helix stores all of the information about the features of a particular 

organism. An angstrom is a metric unit of length, denoted by Å, that is equal to 1/10,000,000 of a 

millimeter. It is smaller than a 

nanometer and is used to measure 

such things as wavelengths and 

atoms. One complete turn of the 

double-helix of DNA measures 

34 Å long by 21 Å wide. 34 and 

21 are consecutive Fibonacci 

numbers whose ratio is 

approximately equal to 1.619! 

     Through an examination of 

the Golden ratio and the 

Fibonacci sequence in the natural world, designs and patterns from nature can be more acutely 

perceived and better appreciated. From Ilić again, “there are clear marks and signs of mathematical 

regularity which appear in nature showing fascinating accuracy” [8, p124]. DNA is only one such 

example of this splendid accuracy. The Fibonacci sequence also shows up in the numbers of petals 

on flowers such as lilies, asters, and cosmos, in reproductive dynamics, in the number of seeds in 

fruits like apples and bananas, and in the optimal growth patterns of trees (shown on the next page) 

which maximizes the ability of a tree to grow more leaves.  

[Figure 8.11. Fibonacci Numbers in DNA. Retrieved from 
https://www.researchgate.net/figure/A-The-double-stranded 
structure-of-DNA in July, 2020] 
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[Figure 8.11. Optimal growth pattern in trees. https://io9.gizmodo.com/15-uncanny-examples-of-
the-golden-ratio-in-nature-5985588 in July, 2020] 
 
     The Golden spiral can be observed in hurricanes, animal flight patterns, seed heads, and spiral 

galaxies. The Golden section appears in the proportions of animals such as dolphins, tigers, starfish 

and ants as well as in the anatomy of humans. Ilić’s paper points out that “the intellectual elite of 

wide domains have been deeply fascinated by the Golden Ratio for more than 24 centuries” [8, 

p125]. Human beings’ modern fascination is the result of the same deep curiosity of the 

Pythagoreans; what do these coincidences mean, and does the universe actually have a 

predetermined mathematical construction? 
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IX. HUMAN ANATOMY 

It should be no surprise that the Golden Ratio’s organizing role in nature also extends to human 

beings. Golden proportions, Fibonacci numbers, and the Golden spiral all reveal themselves in the 

bodies of human beings. Though φ is generally the irrational constant much less well known than 

π, its connection to human anatomy, which has been highlighted since the time of the ancient 

Greeks, is well accepted in Western medicine. Modern doctors and dentists are taught that the 

golden proportion is associated with health and that ideal proportions should be based on the 

Golden Ratio [22, p713]. This is of particular interest to plastic surgeons and dentists who are often 

employed to help a patient modify their appearance to more closely align with idealized Western 

beauty standards which, like in art and architecture, often have as their foundation a theory of 

proportions.  

     The shape of the mouth and teeth, along with facial symmetry which depends on the structure 

of the mouth and jaw, are accepted to be a primary determinant of facial beauty. Dental 

professionals understand this and have tried to establish parameters to help people achieve 

beautiful smiles. In 1978, Dr. Edwin Levin, who practiced dentistry in London until his retirement 

in 2004, observed that in the most aesthetically pleasing smiles, “the width of the maxillary incisor 

[to] the width of the lateral incisor is in the golden proportion” [9, p9]. Similarly, the width of the 

lateral incisor (tooth B in Figure 9.1 below) is in the golden proportion to the width of the canine 

(tooth C). This observation led to the development of a widely-used diagnostic grid, called the 

“Phi Dental Grid,” which is available in different sizes to help dentists improve the aesthetics of 

the anterior teeth. 

    

 

 

 

 

 

 

 

[Figure 9.1. Ideal Proportions for Anterior Teeth. Retrieved from http://www.jidonline. 
com/viewimage.asp?img=JInterdiscipDentistry_2018_8_2_62_233620 in July, 2020] 
 



53 
 

       In her paper, “A Compendium of the Fibonacci Ratio,” Priyanka Katyal asserts that the Golden 

Ratio “epitomizes beauty, congruence, and balance in physical form” [9, p4]. Plastic surgeons are 

trained to consider golden proportions when performing aesthetic procedures on people’s faces. 

Figure 9.2 shows photographs of the woman voted Britain’s “Most Beautiful Face of 2012.” 

Measurements taken at numerous places on her face show that the vertical proportions consistently 

adhere to the Golden Ratio. The Golden Ratio can also be applied to the horizonal proportions of 

the face, e.g., the ideal ratio of the distance between the eyes to the length of one eye is thought to 

be φ. A face where the ratio of the overall width to the width of the eyes is equal to φ is also said 

to be more beautiful. 

 
 

[Figure 9.2. Images of golden proportions in vertical facial proportions. Retrieved from 
https://www.medisculpt.co.za/golden-ratio-beautiful-face/ in July, 2020] 
 

      It should be noted that both dentistry (particularly orthodontics) and plastic surgery also 

address functional problems such as breathing difficulties, migraines, hearing deficiencies, sleep 

apnea, and obviously injuries and accidents. Subtle adjustments to the structure of a patient’s face 

can greatly increase functioning. Parameters for proportions established by the Golden Ratio help 

to ensure that changes are not arbitrary. 
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     An interesting example of the Golden spiral in the human body appears in the inner ear. As can 

be seen in Figure 9.3, the cochlea replicates the spiral of the Nautilus. The cochlea is a complex 

organ whose function is to translate sound vibrations into nerve impulses that get sent to the brain. 

Depending on the frequency and 

intensity, different parts of the 

cochlea move in different ways. 

Research shows that the spiral 

shape of the cochlea makes it 

possible for humans to hear low-

frequency sounds. 
 

[Figure 9.3. Anatomy of the 
human ear. Retrieved from 
///https://drjillgordon.com/how-
hearing-works in July, 2020]  

 

 

     Lüttge argues that “developmental stability is based on [an] organism’s ability to minimize 

random perturbations during [its] development” [12, p102]. Modern researchers are finding that 

healthy vascular systems depend on minimal deviations, or perturbations, from ideal proportions 

over a patient’s lifespan. The Golden Ratio makes some surprising appearances in the area of 

cardiology. With respect to the measurement of the heart, based on research, the ideal ratio between 

the overall vertical measure of the heart and the left ventricle transverse is thought to be φ. Studies 

of cardiac patients conducted in China and Sweden have found that patients with heart failure are 

very unlikely to have measurements whose ratio is close to φ [8, p127]. This leads to the conclusion 

that the Golden Ratio can be used to detect subtle deviations from the norm, which should really 

be thought of as deviations from stability, earlier in the disease process to help improve outcomes 

for patients. 

     A 2019 paper reporting research on blood pressure and mortality finds that ratios of systolic to 

diastolic blood pressure values that deviate from the Golden Ratio are associated with greater “all-

cause mortality.” The research, which was conducted in the United States, includes a total of 

31,622 participants, 2,820 of whom died during the course of the study. Through an analysis of 

the patients who died, the researchers reached the following conclusion:  
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By this preliminary analysis, it was found that participants with SBP/DBP 

values that deviate from the golden ratio have a significantly higher risk 

of death, regardless from other established risk factors in comparison to 

individuals whose BP values fulfill the golden proportion. [17, p56] 
 

        The research team suggests that rather than using absolute parameters for each blood pressure 

value (that frequently change due to conflicting research) to assess risk, it might be more helpful to 

calculate ratios of systolic to diastolic blood pressure to look for deviations from the most stable 

value, φ. Lüttge explains that “fluctuating asymmetry is a widely used measure of developmental 

instability” and describes a stability continuum (shown below) ranging from perfect symmetry to 

death [12, p102].  

 

 

 

     Integrating this type of subtle change into Western medicine makes it more similar to Chinese 

medicine where health is believed to depend on balance and harmony. 

     There are many other examples of relationships between the Golden Ratio and human anatomy. 

The lengths of the bones in hand are said to be Fibonacci numbers. The proportion of arm length 

(from the elbow to the fingertips) to hand length is ideally equal to φ. Similar relationships are 

apparent in the sections of the fingers and in fact, since these measurements are considered to be 

so reliable that, “a stable use of measurement units taken from human body parts” has been utilized 

since the time of the Greeks [21, p509]. The proportion of the length to the width of a woman’s 

uterus, which fluctuates between 2 and 1.4 throughout her life, is approximately equal to φ during 

her most fertile years, and 

women whose uteri proportions 

are closest to φ are found to be 

the most fertile [23, p716]. 

Again, considering cardiology, 

even the Golden angle makes an 

appearance in human anatomy: 

“angles between the outflow tract 
[Figure 9.5. Arm proportions by da Vinci. Retrieved from 
https://www.youtube.com/watch?v=GGUOtwDhyzc, 2020] 
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axis and inflow tract axis and angle between pulmonary trunk and ascending aorta approximate 

the golden angle” [8, p6]. 

     By now the case should be made that the Golden Ratio “is a systemic property of many systems 

in nature” [12, p102]. As in art, it seems to provide an underpinning of order, balance, and 

harmony. Where the Golden Ratio presents itself as an ideal in human health, deviation from it is 

associated with disease and possibly even death. Lüttge quotes researcher Shu-Kun Lin in his paper 

who claims that “symmetry is beautiful because it renders stability” [12, p103]. Human health 

depends on stability and what is healthy is perceived as beautiful. Investigating how the Golden 

Ratio manifests itself with regard to human anatomy is fascinating in itself but also helps to 

challenge the traditional Western disease fighting paradigm which might rather be thought of as 

restoration of internal stability and order. In addition, it emphasizes how intimately connected φ is 

to the human body giving it a special status among other mathematical constants such as π and e. 

 

 

X. GEOMETRY 

There is no greater expression of the Golden Ratio’s magnificence than in geometry. The Greeks’ 

first encounter with the Golden Ratio would have likely occurred while working with the geometry 

of the pentagram‒pentagon. A pentagram which is inscribed inside of a regular pentagon was 

adopted as the secret symbol of Pythagoras and his followers so that they could recognize, and be 

recognized by, fellow members. Huntley asserts that “all the great knowledge of the Pythagoreans 

meets in their symbol, a pentagram, which is called pentagramma, inscribed into a pentagon” [7, 

p38]. The pentagramma and the Golden Ratio are inexorably linked and the symbolism of the 

figure is directly related to the regenerative properties of the Golden Ratio which are perceptible 

in its construction. The Greeks believed that each of the five points on the pentagram were 

associated with one of the earthly elements, earth, air, fire, water and idea. It has also been 

suggested that the pentagram is the symbol of life itself connecting it to the five fingers and five 

toes of humans. Some even believe that it is a symbol of power and immunity that is used to ward 

off evil.  
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     According to Roger Herz-Fischler in his book, A Mathematical History of the Golden Number, 

“pentalpha” may have been another name for the pentagrammma. The Pythagoreans were thought 

to have used the symbol in letters that they sent to each other. They began their correspondences 

with the greeting, “Health to you” [5, p65], rather 

than more customary salutations, highlighting the 

importance that they placed on health. 

     The fundamental characteristics related to the 

proportions of the side lengths of the pentagram and 

pentagon, including the presence of the Golden 

Ratio in these measures, was previously discussed 

in Section II but other φ relationships were not 

emphasized. Given the ubiquity of the golden mean 

in the proportions of their symbol, the 

pentagramma, it is no wonder that the Pythagoreans 

would have assumed an exalted status for the 

Golden Ratio. Figure 10.2 below enumerates these 

relationships. 

 

Figure 10.2 Numerous Golden Relationships in the Pentagramma 
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     Figure 10.1 Pentagramma 
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       In the 1970s Sir Roger Penrose, a British mathematical physicist, used these relationships, 

specifically the proportions between the two types of triangles that compose the pentagram‒

pentagon (shown in blue and orange below), to create the beautiful Penrose tiling. Since pentagons 

cannot tesselate the plane like triangles, squares, and hexagons, he instead took advantage of the 

triangles of the pentagramma combining them in such a way to make tiling the plane possible. The 

image below shows the beautiful, sophisticated pattern resulting from the careful placement of two 

types of quadrilaterals generated by the golden triangles.  

 

                                                                                      

 

 

 

 

 
               
 
 
 
 
 
 
 
 
[Figure 10.3. Penrose Tiling. Retrieved from https://www.nist. gov/image/penrose-tiling in 2020] 
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     Johannes Kepler, the German mathematician, astronomer, and astrologer was an important 

figure during the scientific revolution of the 17th century. He is said to have been the person 

responsible for giving the Golden Ratio the name, “divine proportion.” Kepler made an interesting 

observation between φ and the right triangle. Since φ has the unusual algebraic property that 

21   , he drew an analogy between this property and the Pythagorean Theorem, a2 + b2 = c2, 

leading to the discovery of the “Kepler Triangle” which has side lengths 1,  , and φ.                                         

 

Figure 10.4 Kepler Triangle  

   

  
 
    
 
 
 
 
 
 
 

       Kepler then realized this interesting fact, “if on a line which is divided in extreme and mean 

ratio, one constructs a right-angled triangle such that the right angle is on the perpendicular put at 

the section point, then the smaller leg will equal the larger segment of the divided line” [13, p28].  

 

 

 

 

 

 

 

 

        The Golden Ratio shows up in many other such places. Following is a clever problem 

explained by Huntley involving a 3-dimensional figure that he calls “the golden cuboid.” He 

introduces it by saying “here is another example of Phi appearing out of the blue!” [7, p99]. 
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       The problem presented by Huntley is this: find the dimensions of a “rectangular parallelpiped 

of unit volume which has a diagonal two units in length” [7, p98]. He begins with the base of the 

figure, shown below, inscribed in the unit sphere. 
 

Figure 10.5 Base of Golden Cuboid 

 

Let the lengths of the edges be a, b, c. Then 

          

                     1a b c                   (i) 

         2 2 2 2a b c                   (ii) 

                                      

                                            

Without loss of generality, let b = 1. Then 2 2 3a c  . From Figure 10.5, a c  has a maximum 

value when 3 / 2a c   so a c  may have any value from zero to 3/2. 

Since from (i), c = 1/a and substituting into (ii) results in the equation,  

                

 2 21/ 3a a   ,     i.e.,    4 23 1 0a a   . 

       Then,                           

                               

2 23 5
1

2
.

a

a

 




   

   

       Since from (i),  

      1/ ,c    

                 The required ratios must be  

        : : :1:1/ .a b c     

                 It is then verified that  

                                                          11 1     , the volume from (i), and 

                                                       

                                                       2 21 2     , the diagonal from (ii).  
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Figure 10.6 The Golden Cuboid 

 

 

 

 

 

 

 

Huntley then enumerates four impressive properties of the Golden Cuboid explaining that with 

diligence, more properties might be revealed: 

1. The lengths of the edges and the areas of the faces are in geometric progression:  

     
1 2:1: 1: :     .  

2. Four of the six rectangles are golden rectangles. 

3. While its volume is that of a unit cube, the total surface area of the golden  

     cuboid is 22( 1 ) 4     . 

4. The ratio of the area of a sphere circumscribing it to that of the cuboid is π‒an  

     interesting result. [7, p99]  

        Perhaps the most fascinating property of the Golden Cuboid relates back to the Golden 

Rectangle. Recall that when a square is lopped off of a Golden Rectangle, another Golden 

Rectangle is created (and this this process repeated 

indefinitely until the rectangle becomes a point will always 

yield the same result). It turns out that the area of the resulting 

smaller rectangle will always be 2   times the area of the 

original, e.g., the area of rectangle ABCD multiplied by 2 

will produce the area of rectangle FBCG. If two cuboids of square cross-section are cut from the 

Golden Cuboid (see dashed lines in Figure 10.6), the edges of the remaining cuboid will have 

measures in the same ratio as the original! Again, this process can be repeated with the same result 

until the cuboid encloses a “limiting point” [7, p100]. 
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      Propositions 13‒17 in Euclid’s Elements Book XIII present descriptions of the five Platonic 

solids which are the tetrahedron, hexahedron, octahedron, dodecahedron, and icosahedron. The 

Platonic solids “are associated with the name of Plato because of his efforts to relate them to the 

important entities of which the world is made” [7, p31]. In his dialogue, Timaeus, Plato elucidates 

his theory that everything in the universe is composed of some combination of these elements. 

Since at least the time of Euclid, it has been known that there are five, and no more than five, 

Platonic solids. 

Platonic Solids 

[Figure 10.7. Image downloaded from https://aeqai.com/main/2013/12/geometrically-ordered-
design-the-solids-of-plato/ in July, 2020] 
 

The Platonic solids are defined to have the following three properties: 

1. All faces are congruent polygons. 

2. The same number of faces meet at each vertex. 

3. The same number of edges meet at each vertex. 
 

      Leonhard Euler was an 18th century Swiss mathematician, and physicist who made many 

important contributions in various areas of mathematics and is considered to be one of the founders 

of pure mathematics. Euler’s topological formula, F + V = E + 2, relates the number of faces, 

vertices, and edges of the various polyhedra. This formula is used to prove that there are only five 

Platonic solids. 
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Theorem: There are exactly five Platonic solids.         

Proof:  

Observe that 2( ) 2S V E F     regardless of triangulation. If q = the number of edges that 

meet at each vertex and p = the number of edges in each face, then for any regular/Platonic 

tiling/triangulation of S2, V is related to E: qV = 2E, F is related to E: pF = 2E. 

 

2( ) 2S V E F      
 

2 2
2

E E
E

q p
            p ≥ 3, q ≥ 3, 

2 2 2

2 2 2 2

E E E

E q E E p E
  

 
 

 

1 1 1 1

2q p e
    

 

1 1 1 1

2q e p
    

 

1 1 1 1 1

2 2q p e
     

                         

       Checking the p and q values for each solid verifies that these are the only combinations of 

values that yield results less than 1/2, therefore there can only be five Platonic solids ∎ [19, p62] 

Polyhedron Faces Edges Vertices Verify Euler’s Formula 

Tetrahedron 4 faces 6 edges 4 vertices 4 + 4 = 6 + 2  

Hexahedron 6 faces 12 edges 8 vertices 6 + 8 = 12 + 2 

Octahedron 8 faces 12 edges 6 vertices 8 + 6 = 12 + 2 

Dodecahedron 12 faces 30 edges 20 vertices 12 + 20 = 30 + 2 

Icosahedron 20 faces 30 edges 12 vertices 20 + 12 = 30 + 2 
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     That the Platonic solids could possibly represent all of the entities that everything in the 

universe is made of meant that they were held in the highest esteem by the Greeks. The 

characteristics of the polyhedra emphasize their significance as foundational elements of the 

natural world. Five being the number of total polyhedra is significant in itself. The Greeks 

associated the even number, two, with masculinity and the odd number, three, with femininity. 

These two numbers “taken together comprise the principle and sources of generation” [15, p23].  

     The pentagonal faces of the dodecahedron have an obvious connection to the Golden Ratio 

which also makes several other appearances in the features of the polyhedra. An icosahedron can 

be inscribed inside an octahedron in such a way that each vertex of the icosahedron divides the 

edge of the octahedron into golden proportions. Golden rectangles can be observed in the 

icosahedron when three coplanar groups of four vertices are connected by perpendicular 

quadrilaterals (see Figure 10.8 below). Similarly, three perpendicular golden rectangles are formed 

when the “centroids of the twelve pentagonal faces of a dodecagon, divisible into three coplanar 

groups of four,” are connected by quadrilaterals [7, p33]. These unexpected appearances of the 

Golden Ratio contribute to the “aura of mystery” surrounding the Platonic solids. [7, p31].  

 

 

 

 

 

 

 

 

 

[Figure 10.8. The Icosahedron. Retrieved from archimedes-lab.com/wp/2020/03/03/ icosahedron 
-with-golden-ratio-cross-sections/ in July, 2020] 

 

      These are just a very few examples of how the Golden Ratio expresses itself in Geometry. 

Discovering additional appearances is a rich topic for further inquiry.  
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XI. CONCLUSION 

Manifestations of the Golden Ratio in nature, culture, and the universe itself have been explored 

through numerous and varied examples. There are, of course, many more but these provide a 

glimpse into the types of coincidences and connections that have intrigued humans for 25 

centuries. Huntley asserts that the Golden Ratio, or divine proportion, was an idea “that appealed 

strongly to the aesthetic sensibilities of the ancient Greeks from the time of Pythagoras” [7, p2]. 

The Golden Ratio’s aesthetic appeal is just as overwhelming today. It is as mysterious and 

charming as it has ever been, and its beauty persists undiminished.  

      Huntley also claims that the perception of beauty is a psychological experience, dependent on 

two factors, one biologically inherited and instinctual, the other acquired through education. He 

quantifies this experience arguing that more learning leads to an enhanced ability for aesthetic 

appreciation. Education accounts for the feeling of satisfaction and awe gleaned from working 

through a challenging proof, or suddenly realizing that a problem has a deft solution. In his paper, 

“The Golden Section in Beauty and Nature,” Ulrich Lüttge probes the other side of the perception 

of beauty, the part that is inborn. Through research in neuroscience, it is known that humans are 

more likely to perceive beauty in symmetry [16, p103]. Though the Golden Ratio makes manifest 

balance and order in a physical form, perhaps this is an oversimplification. Lüttge asks “do we 

find [the Golden Ratio] beautiful because our brains are adapted to it, or is it a link between science 

and a transcendental dimension?” [12, p99]. He argues that beauty cannot be assessed through 

reason; it can only be a “transcendental category,” and believes that “optimization is the cutting 

edge between science and transcendence” [9, p101].  

      This is not so different from the perspective of the Pythagoreans who were also particularly 

interested in the mysterious and spiritual qualities of the Golden Ratio. Today, as in eras since the 

time of the Greeks, defining beauty is an elusive matter but mathematics undeniably enhances the 

ability of human beings to perceive structure and harmony in the universe, and to more fully 

experience aesthetic pleasure related to both nature and culture. In 1509, Luca Pacioli’s three-

volume De Divina Proportione referred to itself as: 
 

A work necessary for all the clear-sighted and inquiring human minds, in 

which everyone who loves to study philosophy, perspective, painting, 

sculpture, architecture, music and other mathematical disciplines will find a 



66 
 

very delicate, subtle and admirable teaching and will delight in diverse 

questions touching on a very secret science. [13, p60] 
 

       Pacioli makes clear what has just been shown, that a theory of proportions permeates various 

academic disciplines such as art, architecture, music, biology and anatomy. He also acknowledges 

that the Golden Ratio is an exemplary topic of study for “inquiring human minds.” As Huntley 

suggests, it offers the possibility of attaining a deeper level of aesthetic appreciation through 

greater knowledge. That the Golden Ratio has a plethora of unique and amazing properties, and 

manifests itself in so many interesting and surprising places, including those most intimately linked 

to the universe and humanity itself, ensures that it will continue to endure through the ages as a 

worthwhile subject of research for the most curious minds. 
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