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1 

Introduction 

 

Group rings are a special class of rings. They are built by combining two of the most 

important structures in Algebra: groups and commutative rings. Interestingly, the 

resultant group rings are not necessarily commutative. So group rings provide an 

additional example of noncommutative rings outside of the usual example of matrix 

rings. Further, we’ll see that group rings can be viewed as modules over the component 

ring, with an additional way to multiply elements of the module. In particular, if the ring 

is a field, its group rings can be viewed as vector spaces over the field, with the additional 

multiplicative operation. This paper will provide an overview of group rings, explore 

conditions under which group rings have zero divisors, and discuss ways to view group 

rings in terms of simple components. 

 

 

Section 1. Basic Definitions and Properties 

 

We begin our exploration of group rings by looking at some useful facts about group 

rings. These properties will not only provide some support for some of the later theorems, 

but also show that group rings are different enough from generic rings to make them 

worth studying. Throughout this paper we assume that all rings are commutative with 

1 0 . We begin with the definition of group ring. 

 

Definition 1.1. Let R be a ring, and let  1, , nG g g  be a finite group whose operation 

is written multiplicatively. Then the group ring of G with coefficients in R is the set of all 

formal sums: 

 

 1 1 2 2 :  for 1n n iRG a g a g a g a R i n       , 

 

with operations as defined below. This definition is extended to group rings of infinite  
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groups by only considering finite sums (i.e., sums in which only finitely many 

coefficients are nonzero). The ordering of terms in the sum is irrelevant. So two elements 

of a group ring are considered equal if and only if the coefficients of each group element 

are equal. That is, if 1 1 2 2 n na g a g a g    and 1 1 2 2 n nb g b g b g    are elements of 

RG , then 1 1 2 2 1 1 2 2n n n na g a g a g b g b g b g        if and only if i ia b  for each i 

between 1 and n. Based on the context, we will usually write elements of RG  as i ia g , 

representing the element 
1

n

i i

i

a g


 . Similarly, we may write an element as 
x

x G

a x


 , and 

again without the index as xa x . 

 

Addition is defined componentwise: 

 

   

     

1 1 2 2 1 1 2 2

1 1 1 2 2 2 .

n n n n

n n n

a g a g a g b g b g b g

a b g a b g a b g

      

      
 

 

That is,      i i i i i i ia g b g a b g     . 

 

Multiplication is defined by 

 

  1 1 2 2 1 1 2 2 1 1 2 2n n n n n na g a g a g b g b g b g c g c g c g          , 

 

where kc , the coefficient of kg , is 
i j k

i jg g g
a b

 . That is, 

 

  
1 i j k

n

i i j j i j k

k g g g

a g b g a b g
 

 
  

 
 

    . 
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Since elements of RG  are finite sums, this characterization of multiplication is valid 

even in the case that G is an infinite group. 

 

Proposition 1.1. With the operations defined above, RG  is a ring with unity. 

 

Proof: First, we show that  ,RG   is an abelian group. It is easy to check that 0g  is 

the additive identity. It is also clear that for an element ga g , the additive inverse is 

 ga g . The remaining group properties for RG  are inherited from the ring R. As an 

example, we check the associativity of addition in RG . Let g

g G

a g


 , g

g G

b g


 , and g

g G

c g


  

be elements of RG . Then, since addition is associative in R, 

 

 

  

  

 

,

g g g g g g

g G g G g G g G g G

g g g

g G

g g g

g G

g g g

g G g G

g g g

g G g G g G

a g b g c g a b g c g

a b c g

a b c g

a g b c g

a g b g c g

    





 

  

 
     

 

  

  

  

 
   

 

    





 

  

 

 

and hence addition is associative in RG . 

 

The associativity of multiplication likewise follows from the corresponding properties in 

the ring R and the group G.  
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Note that for any i and k, there is a unique j with i j kg g g . By the definition of addition 

in RG , and because addition is commutative and associative in RG , for any i ia g  and 

j jb g  in RG , 

 

    
 1 ,i j k

n

i i j j i j k i j i j

k g g g i j

a g b g a b g a b g g
 

 
  

 
 

     . 

 

Notice that for a particular pair  ,i j , the definition of multiplication in RG  implies that 

     i j i j i i j ja b g g a g b g . Therefore, 

 

    
 

  
 , ,

i i j j i j i j i i j j

i j i j

a g b g a b g g a g b g     . 

 

It is now straightforward to check the distributive properties in RG . 

 

The unity element of RG  is 1 1R G  since for every xa x RG  we have 

 

         1 1 1 1 1 1 1 1R G x R x G x x R G x R Ga x a x a x a x a x        .  

 

Example. If 2 4 3

8 , | 1,G D s r s r rs sr      is the dihedral group of order 8, and 

R  , then 
23 2r sr    and 

22s sr    are elements of 8D . Then 

 

  2

2

3 2 1 2

3 2

r sr s

r sr s

      

  
 

and 
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  2 2

2 2 2 2

3 2

3 2 2

6 3 4 2

6 3 4 2 1 .G

r sr s sr

rs rsr sr s sr sr

sr sr r

   

   

    

  

 

In the case where F is a field, an alternate characterization of the group ring FG  is as an 

F-vector space with basis G and the additional multiplicative operation defined above. As 

we have already seen, FG  is an additive abelian group. The remaining parts of the 

definition of vector space are straightforward to verify. 

 

There are a few quick facts worth pointing out regarding group rings. Note that we can 

identify the ring R with the subring  1 :Gr r R  of RG  using the injective ring 

homomorphism : R RG   by   1Gr r  . Also, we can identify the group G with the 

subgroup  1 :g g G  of  RG

, the multiplicative group of invertible elements in RG , 

using the injective group homomorphism  :G RG


  by   1Rg g  . 

 

In addition to the group G and the ring R both residing within the group ring RG , group 

rings also inherit some other properties from the group and the ring. 

 

Proposition 1.2. Let G be a group and R be a ring. Then RG  is a commutative ring if 

and only if G is abelian. 

 

Proof: First suppose that RG  is a commutative ring. Then G is abelian as a corollary to 

the fact that  G RG


 . 

 

Now, suppose that G is abelian, and let ,g h

g G h G

a g b h RG
 

  . Then, since R is a 

commutative ring, 
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,

,

g h g h

g G h G g h

h g

g h

h g

h G g G

a g b h a b gh

b a hg

b h a g

 

 

  
  

  



  
   
  

  



 

  

 

and hence RG  is a commutative ring.  

 

The next proposition is straightforward to check, but shows that subrings of the ring R 

and subgroups of the group G translate into subrings of the group ring RG  as one would 

expect. 

 

Proposition 1.3. Let G be a group and let R be a ring. 

(i) If S is a subring of R, then SG  is a subring of RG ; and 

(ii) If H G , then RH  is a subring of RG . 

 

Note that if 1G  is the identity in G, then for every a R  we write 1Ga  as a . If 1R  is the 

identity in R, we write 1R g  as g for every g G . In particular, we simply write 1 1R G  as 

1. 

 

The following propositions show that group rings of finite groups truly differ from 

arbitrary rings in the general sense. In particular, most group rings have nontrivial centers 

and, in the case that the ring is a field, group rings have maximal ideals. 

 

Proposition 1.4. Let G be a group with a nontrivial finite normal subgroup H, and let R 

be a ring. Then RG  has a nontrivial center; specifically, 
h H

h


  is in the center of 

the group ring RG . In particular, if G is finite, then G is a nontrivial finite normal 

subgroup of itself, and hence RG  has nontrivial center. 
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Proof: Since H G , gH Hg  for every g G . Since   is the sum of all of the 

elements of H, for every g G , g  is the sum of all of the elements of gH . Similarly, 

g  is the sum of all of the elements of Hg . Since gH Hg , it follows that g g  . 

That is,   commutes with every element of G. Now let ga g RG . Then 

 

    

 

  .

g g

g

g

a g a g

a g

a g

 











 





  

 

Thus, 
h H

h


  is in the center of RG .  

 

Definition 1.2. Let R be a ring and let  1, , nG g g  be a finite group. Then the map 

:f RG R  by  i i if a g a   is called the augmentation map. Proposition 1.5 

shows that this map is a homomorphism. Its kernel is called the augmentation ideal of 

RG . 

 

Proposition 1.5. Let R be a ring and let  1, , nG g g  be a finite group. Then the 

augmentation map is a homomorphism. Also, the augmentation ideal is generated by 

 1:g g G  . Further, if R is a field then the augmentation ideal is maximal. 

 

Proof: Let :f RG R  be the augmentation map. Let i ix a g  and  j jy b g  be 

elements of RG . Then 

 

          i i i i i i if x y f a b g a b a b f x f y            . 

 

Also, using the fact that f preserves sums, 
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, ,

i i i j i j i j

i j i j

f xy f a b g g a b a b f x f y
 

     
 
    . 

 

The augmentation ideal is  : 0i i iI a g RG a    . Let 0 1:I g g G   . Suppose 

that x I . If i ix a g , then  1i i ix x a a g     . So 0x I . On the other hand, 

note that for every g G ,    1 1 1 1 1 1 0R R G R Rf g f g      . So 1g I   for every 

g G . Thus, 0I I , and the augmentation ideal is generated by  1:g g G  . 

 

The augmentation map is clearly onto, so RG I R . So if R is a field, then the quotient 

RG I  is a field, and thus I must be maximal [2, p. 224].  

 

 

Section 2. Zero Divisors 

 

We’ve already seen conditions under which a group ring is commutative. Taking our 

investigation a step further, we can try to decide whether a group ring has zero divisors, 

which will help in classifying group rings in the hierarchy of ring structures. For 

example, in the case that the group ring is commutative and has no zero divisors, the 

group ring is an integral domain. 

 

Recall that a group element is called a torsion element when its order is finite. 

 

Proposition 2.1. Let G be any group containing a torsion element g, and let R be a ring. 

Then the group ring RG  has zero divisors. So in particular, if G is a finite group, then the 

group ring RG  has zero divisors. 
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Proof. Set  ordm g . Then 1 g  and 
11 mg g     are nonzero elements of RG , 

and   11 1 1 1 1 0m mg g g g         .  

 

Whether a group ring RG must have zero divisors when G is infinite and torsion-free is 

an open problem. The current conjecture is that G is torsion-free if and only if RG  has 

no zero divisors. When R is a field, we know the conjecture to be true in the case of 

abelian groups, free groups, and supersolvable groups [4, p. 174]. Proposition 2.2 shows 

the conjecture is true in the special case where G is an abelian group and R is a field. 

 

Proposition 2.2. Let G be an abelian group and let F be a field. Then G is torsion-free if 

and only if FG  has no zero divisors. 

 

Proof. The backwards direction follows from Proposition 2.1. 

 

For the forwards direction, suppose that G is torsion-free and let , FG    be such that 

0  . Since there are only finitely many group elements with nonzero coefficients in 

each of the group ring elements, there is a finitely generated subgroup H of G such that 

FH  contains   and  . By the Fundamental Theorem of Finitely Generated Abelian 

Groups, H is the direct product of cyclic groups 1 , , mx x . Since G is torsion-free, 

each ix  is infinite. Then FH  is contained in  1, , mF x x , the quotient field of the 

polynomial ring  1, , mF x x . Since  1, , mF x x  is a field, FH  is an integral domain. 

Hence, 0   or 0  , so FG  has no zero divisors.  

 

There is a related result that sheds some additional light on the zero divisor problem, but 

first we need a definition. 

 

Definition 2.1. A ring R is said to be prime if for all , R   , 0R    implies that 

0   or 0  . 
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Theorem 2.3. Let F be a field and let G be a group. Then G has a nontrivial finite normal 

subgroup if and only if FG  is not a prime ring. 

 

Proof (part 1). The forward direction is fairly simple, while the reverse direction will 

require some work. 

First, suppose that  1, , nH h h  is a nontrivial finite normal subgroup of G. Let 

1 nh h    . Since multiplication by elements of H is a bijection from H to H, it 

follows that h   for every h H . So 

 

 2

1 1n nh h h h n           . 

 

Now let 1n   . Then   21 0n n n         . 

 

By Proposition 1.4, we know that   is a central element of FG . Thus for any u FG , 

we have 0 0u u u     , and hence   0.FG    Since   and   are clearly 

nonzero, FG  is not a prime ring. This concludes the proof of the forwards direction of 

Theorem 2.3.  

 

The reverse direction of the proof will require a bit more work. We start with some 

definitions and necessary lemmas. 

 

Definition 2.2. Let G be a group. We define 

 

   :  has only finitely many conjugates in G x G x G    

and 

    :  and  has finite orderG x G x G x    . 

 

So  G  is the set of torsion elements in  G . Hence,    G G   . When there is  
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no ambiguity of the group G, we will abbreviate the notation of these two subsets as 

simply   and  . 

 

It is well known that the number of conjugates of a group element x is equal to the index 

of the centralizer of x in the group,  : GG C x   . Hence, an alternate characterization of 

the subgroup   is the set of all x G  such that  : GG C x     . 

 

Recall that the commutator subgroup of a group H is 1 1' : ,H x y xy x y H   . The 

commutator subgroup is normal in H, and the quotient 'H H  is abelian [2, p. 90]. 

 

Lemma 2.4. Let G be a group. Then 

(i)   and   are normal subgroups of G; 

(ii)    is torsion-free abelian; and 

(iii)   is nontrivial if and only if G has a nontrivial finite normal subgroup. 

 

Proof. For the proof of (i), it is clear that 1 . Let x  and g G . Then 

 
1

1 1 1gx g gxg


   , and is hence an inverse of one of the finitely many conjugates of x. 

Thus, there are only finitely many conjugates of 1x , so 1x  . 

 

Let y . Then 1 1 1gxyg gxg gyg   , a product of a conjugate of x with a conjugate of 

y. Since there are only finitely many such conjugates, xy  and hence G  . 

 

Lastly, 1gxg   is one of the finitely many conjugates of x, and so has only finitely many 

conjugates itself. Hence, 1gxg  , and   is a normal subgroup of G. 
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Suppose further that x and y have finite order, so ,x y  . We’ve already shown that 

1x , xy , and any conjugate of x are elements of  . So to complete the proof that   is a 

normal subgroup of G, we need only to show that these elements have finite order. Since 

   1ord ordx x , 1x  . Also, since    1ord ordgxg x  , 1gxg   . 

It remains to show that xy  has finite order. Consider ,H x y . Since H is a finitely 

generated subgroup of  , we see that the set 0H  of torsion elements of H is a finite 

subgroup of H [5, p. 116]. But since 0H  contains the generators of H, we have 0H H , 

and so xy  is a torsion element. Thus we can conclude that   is a normal subgroup of G, 

and hence of  . 

 

For (ii), since   is a normal subgroup of  , and   consists of those elements of   of 

finite order,    is torsion-free. To show that    is abelian, let ,x y . Then 

,x y  is a finitely generated subgroup of  , and so , 'x y  is finite [5, p. 116]. So 

   
11 1x y xy yx xy
    has finite order. That is,    

1
yx xy

  , which implies that 

   yy xx     , so that    is abelian. 

 

For (iii), we’ll start with the forward direction by supposing that 1  . So let    

be nontrivial. Consider 2, , , nD    , where 2, , , n    are the finitely many G-

conjugates of  . As above, since D is a finitely generated subgroup of  , we know that 

'D  is finite. Also, 'D D  is finitely generated by elements of finite order. Since 'D D  is 

abelian, it follows that 'D D  must be finite. Since ' 'D D D D , we see that D  is 

also finite. So D is nontrivial and finite, and it remains to show that D is closed under 

conjugation. 

 

Let x G  and d D . For some m , 1, , m   , and  21 , ,, ,, nmd d    , 
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1 2

1 2

1 2

1 1

1 2

1 1 1

1 2

1 1 1

1 2 .

m

m

m

m

m

m

xdx xd d d x

xd x xd x xd x

xd x xd x xd x

 

 

  

 

  

  







  

 

Since each id  is a conjugate of  , then each 1

ixd x  is a conjugate of   and thus is one 

of the generators of D. Hence, the entire product is in D, so 1xdx D   and thus D G . 

So G has a nontrivial finite normal subgroup. 

 

For the reverse direction of (iii), suppose that 1  . Let H be a finite normal subgroup 

of G and let h H . Then for every x G , 1xhx H  , and since H is finite, h has only 

finitely many G-conjugates. Also, since H is finite,  ord h  is finite. Hence h  , so 

1h   and thus H is trivial.  

 

Lemma 2.5. Let G be a group and let 1, , nH H  be a finite collection of subgroups of G. 

(i) If  : iG H    for all i, then  : iG H  . 

(ii) If G is the union of finitely many right cosets of the subgroups iH , then 

 : iG H    for some i. 

 

The proof of this lemma is not difficult, and the details can be found in [5, p. 115, 120].  

 

For an element FG , we define the support of  , denoted Supp , as the set of all 

group elements whose coefficients are nonzero in the expression xa x  . By 

definition of FG , there can only be finitely many such group elements, and hence 

Supp  is a finite subset of G. Also, note that this subset is empty if and only if 0  .  

 

We now proceed with the remainder of the proof of Theorem 2.3. 
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Proof of Theorem 2.3 (part 2). Suppose that FG  is not a prime ring, and let , FG    

be nonzero such that   0FG   . We begin by separating   and   into   

components and G  components. That is, 0 1     and 0 1    , where 

0Supp  and 0Supp  are subsets of   and 1Supp  and 1Supp  are subsets of G . 

Let Suppx   and Suppy  . Note that    11 0yx FG    , so  11 Supp x   

and  11 Supp y  . Thus, without loss of generality, we can assume that 1 Supp  and 

1 Supp . In particular, since 1 , we know that 0  and 0  are nonzero. We now 

show that 0 0 0   . 

 

Suppose that 0 0 0   . Recall that for any ,x y G , conjugates of xy  are products of 

conjugates of x and y. So since 0Supp  and 0Supp  are subsets of  , it follows that 

 0 0Supp     , and since 1Supp G   , it follows that  0 1Supp G    . Then 

0 0 0 0 1        is not zero since 0 0 0    and there is no overlap in the group 

elements in the expressions for 0 0   and 0 1  . 

 

Fix  0Suppz   . For any 0Suppa   we know that a  and hence  : GG C a    is 

finite. Let 

 
0Supp

G

a

H C a


 . 

 

By Lemma 2.5,  :G H   . Let h H . Then for every 0Suppa  , 1h ah a  . Hence, 

0 0

1 hh    . Then, since   0FG    and thus 0h   , 

 

 1 1 1 1

0 1 0 1 0

1

10 h h hh h h h h h h                     . 

 

In particular, 1

0 1h h     . Since  0Suppz   , it is clear that  0Suppz   , so  
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that  1

1Supp h hz   . So if  1 1upp , ,S nx x   and  1,upp ,S my y  , then 

1

i jz h x hy  for some  1, ,i n  and  1, ,j m . In other words, 
1 1

j izy h x h  , and 

thus ix  is conjugate to 
1

jzy 
 in G. 

 

Although H may be infinite, there are only finitely many pairs  ,i jx y , and thus only 

finitely many  ,i j , such that ix  is conjugate to 
1

jzy 
. So we can choose (finitely many) 

i jg G  such that 
1 1

i j i i j jg x g zy  . So for each h H , there exist  ,i j  such that 

1 1

i i j i i jh x h g x g  , so    
1

1 1

i j i i j ihg x hg x


   . That is,  1

i j G ihg C x  . Thus for every 

h H  there exists  ,i j  such that  G i i jh C x g , so that  
,

G i i j

i j

H C x g . But 

 :G H   , so the number of (right) cosets of H is finite. So G is a finite union of cosets 

of H, with representatives 1, , kw w : 
k

k

G Hw . Thus,  
, ,

G i i j k

i j k

G C x g w  is a finite 

union of cosets of the subgroups  G iC x , and Lemma 2.5 allows us to conclude that for 

some i,  : G iG C x     . But this implies that ix  , which contradicts the fact that 

1Suppix  . Thus, 0 0 0   . 

 

So we have 0 0 0    with 0  and 0  nonzero elements of F . That is, F  has 

nontrivial zero divisors, so that   cannot be a torsion-free abelian group by Proposition 

2.2. By Lemma 2.4(ii), however,    is a torsion-free abelian group. It follows that   

is nontrivial, and so by Lemma 2.4(iii), G has a nontrivial finite normal subgroup.  

 

The relation of Theorem 2.3 to the zero divisor problem is further shown in a corollary. 

 

Corollary 2.6. Let G be a torsion-free group and F be a field. Then FG  has zero divisors 

if and only if FG  has nonzero elements whose squares are zero. 
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Proof. The backward direction is simple, for if a FG  is nonzero such that 
2 0a  , then 

a is a zero divisor. 

 

The forward direction isn’t much harder. Let ,a b FG  be nonzero such that 0ab  . 

Since G is torsion-free, G cannot have a nontrivial finite normal subgroup, so Theorem 

2.3 implies that FG  is prime. So   0b FG a  . However, since 0ab  , for every 

FG ,      0a b a b abb b     . This implies that every element of  b FG a  has 

square zero.  

 

 

Section 3. Semisimplicity 

 

The question of semisimplicity in group rings is also an important area of interest. Much 

of our focus will be on group rings where the ring is the field  of complex numbers. 

First, we present a more general result pertaining to group rings where the ring is any 

field of characteristic 0. Some of the following proofs will require not only the tools of 

Algebra, but also the tools of Analysis. Again, we need some definitions. 

 

Definition 3.1. Let R be a ring and let U be an R-module. Then: 

 U is simple if 0U   and U has no proper nonzero submodules; 

 U is semisimple if it is a direct sum of simple modules; and 

 U is injective if whenever U is a submodule of an R-module V, then V has a 

submodule W such that V U W  . 

 

We will be working with left modules. The results, however, are analogous for right 

modules. If G is a finite group and F is a field, the following theorem provides the 

condition under which every FG-module is injective. 
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Theorem 3.1 (Maschke). Let G be a finite group and let F be a field with  char F G . 

If V is any FG-module and U is any submodule of V, then V has a submodule W such that 

V U W  . 

 

Proof. Let V be an FG-module and let U be a submodule of V. We will construct an FG-

module homomorphism :V U   satisfying the following: 

(i)  u u   for every u U ; and 

(ii)     v v    for every v V  (so that 2  ). 

 

Assuming we have such a homomorphism, set kerW  . Then W is a submodule of V. 

If v U W  , then  v v  since v U  and   0v   since v W . So 0U W  . If 

v V , write     v vv v   . We have  v U   and  v v W  , since 

          2 0v v v v v v           . Hence v U W  , and thus V U W  . 

 

We now show the existence of such a function  . First note that V is an F-vector space, 

and U is an F-vector subspace of V. Start with an F-basis 1  of U. Extend this to a basis 

 of V containing 1 . Then  0 1span \W   is the F-complement of U in V. But 0W  is 

not necessarily an FG-submodule in its own right. 

 

Nonetheless, every element of V can be expressed uniquely as the sum of an element in U 

and an element in 0W . So we can define 0 :V U   by  0 u w u    for every u U  

and 0w W . For each a G , define :a V V   by  a v a v   . Note that each a  is F-

linear and that for every a G , 1

1

aa
 

 . Then for each a, 10 :a a
V V      is a 

map given by     1

1

0 0a a
v a a v   

 . Since 0  maps V to U, and U is stable 

under the action of G, the image of 10a a
     is in U. Since a , 0 , and 1a

   are F-

linear, 10a a
     is an F-linear transformation. Further, if u U , then 1a u U  , so  
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 1 1

0 a u a u   . That is, for every u U , 

 

    1

1 1

0 0a a
u a a u aa u u   

    . 

 

Now let 1Fn G G    as an element of F. Since  char F n , we know n is nonzero, 

and hence n has an inverse in F. We now define the map :V U   by 

 

    10

1
a a

a G

v v
n

    



  . 

 

Then   is a linear combination of F-linear transformations, and so is F-linear. If u U , 

then 

    10

1 1
a a

a G

u u nu u
n n

    



   . 

 

Also, if v V , then  v U  , and so       2 v v v     . 

 

All that is left to show is that   is in fact an FG-module homomorphism. We note that 

for every h G  and v V , 

 

    

    

  

  

 

1

1

1

1

1

0

1 1

0

0

0

1

1

1

1

.

a a
a G

a G

k k
k h a
a G

k k
k h a
a G

hv hv
n

h h a a h v
n

h v
n

h v
n

h v
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The additive aspect of the homomorphism follows from the fact that   is F-linear, and 

thus   is an FG-module homomorphism.  

 

Note that if  char 0F  , then Theorem 3.1 applies to any finite group. Also, by 

Wedderburn’s Theorem, FG is semisimple since Theorem 3.1 implies that every FG-

module is injective [2, p. 820]. 

 

The remainder of our focus will be on group rings with coefficients in . Complex group 

rings are relatively accessible while remaining interesting. The tools of Analysis will 

finally come into play as we explore a slightly different, yet closely related, version of 

semisimplicity known as Jacobson semisimplicity. 

 

Definition 3.2. Let R be a ring. Then the Jacobson radical of R, denoted  J R , is the 

intersection of all maximal ideals of R. The ring R is called Jacobson semisimple when 

  0J R  . 

 

Jacobson semisimplicity is closely related to the usual semisimplicity through a theorem 

that says a ring R is (left) semisimple if and only if it is (left) artinian and   0J R    

[6, p. 555]. Recall that a ring R is (left) artinian if every descending chain of (left) ideals 

1 2 3I I I    terminates—so there is some 1n   such that for all m n , m nI I . 

 

Before looking at results that are specific for group rings, there is an alternate 

characterization of  J R  for any ring with unity, which we will find useful. 

 

Lemma 3.2. Let R be a ring with unity. Then 

 

   :1  is invertible for all J R x R rx r R    . 
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Proof: Let x R  such that 1 rx  is not a unit for some r R . Let M be a maximal ideal 

of R with 1 rx M  . Since 1 M , we have rx M . Since  J R M ,  rx J R , and 

hence  x J R . 

 

Now, let  \x R J R . So there is a maximal ideal M of R with x M . So  ,R M x . 

So 1 y rx   for some y M . Since 1 rx y  , 1 rx M  . Thus 1 rx  is not a unit. 

That is, x R   such that 1 rx  is not a unit for some r R . 

 

By double inclusion,    :1  is invertible for all J R x R rx r R    .  

 

We’ll need a few more definitions and lemmas before we can discuss semisimplicity of 

complex group rings. 

 

Definition 3.3. Let G be a group, and let 
xd x   be in G . Define   by 

 

xd  , 

 

where x x xd d d  is the usual absolute value (modulus) on . 

 

Lemma 3.3. Let G be a group. Then for all , G   , 

(i)       ; 

(ii)    ; and 

(iii) 
nn   for every n . 

 

Proof. Let G be a group, and let , G   . Write 
xa x   and 

yb y  . Then: 
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(i)  x y x y x y x y

x y x y x y

a x b y a b x a b a b   
 

                .  

 

(ii) Using part (i), we see that 

 

    
 

 
   , , ,

x y x y x y x y

x y x y x y

a x b y a b xy a b xy a b         . 

 

But since the modulus operator is multiplicative in , 

 

   

  
, ,

x y x y x y

x y x y

a b a b a b        , 

 

and hence    . 

 

(iii) Because 1 1n n n        by (ii), an inductive argument shows that 

nn  .  

 

Definition 3.4. For an element G  where 
xa x  , define the * operator by 

 

* 1

x x   , 

 

where xa  denotes the complex conjugate of xa . 

 

Example. Let 8G Z x   be the cyclic group of order 8, and consider the element 

 2 52 3ix i x     in G . Then    * 6 32 3i x i x     . 
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Proposition 3.4. Let G be a group. The * operator defined above has the following 

properties for every xa x   and yb y   in G , and for every z : 

(i)  
* * *     ; 

(ii)    
* *z z  ; 

(iii)   * **
   ; and 

(iv)    
*

*
n

n   for every n . 

 

Proof. Property (i) follows readily from the fact that complex conjugation respects 

addition. Property (ii) follows from the fact that complex conjugation respects 

multiplication. Property (iii) also follows from the fact that complex conjugation respects 

multiplication, along with the fact that for group elements x and y,  
1 1 1xy y x
   . 

Property (iv) is an immediate consequence of property (iii) using an induction argument, 

since      
* * *

1 * 1n n n       .   

 

Definition 3.5. Let G be a group. Let xa x G . Define the trace map tr : G  

such that   1tr xa x a , where 1a  is the coefficient of the identity element in G. 

Note that the trace map is -linear, since for any ,x xa x b x G   and ,z w  , 

 

        1 1tr tr tr trx x x x x xz a x w b x za wb x za wb z a x w b x             . 

 

Slowly but surely we’re getting closer to our big result. We only need one more 

definition and three more lemmas. 

 

Definition 3.6. Let G be a group. Let 
xa x   and 

xb x   be in G . Define a 

Hermitian inner product on G  by 
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 , x x

x

a b  . 

 

The norm associated with this inner product is 

 

 
1 2 1 2

21 2
, x x x

x x

a a a  
   

     
   
  . 

 

Lemma 3.5. The inner product defined above is, in fact, a Hermitian inner product. 

 

Proof. Let G be a group, and let xa x , xb x , and xc x  be in G . Let z . 

 

Note that 

    

 

   

, ,

, , ,

x x x x x x

x x x

x x

x x x x

a x c x b x a c x b x

a c b

a b c b

a x b x c x b x

 



 









    



 

     

and 

    

 

 

   

, ,

, , .

x x x

x x x

x x x x x x

x x x

x x x x

a

a b c

a b c

x b x c x a x b c x

a b a c

a x b x a x c x

 











 







    

 

     

Also, 

   

 

,

, ,

,x x x x

x x

x x

x x

a x b x a x b x

a b

z a b

a x

z

z x

z z

b
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and 

   

 

, ,

.,

x x x x

x x

x x

x x

a x b x a x b x

a b

z a

z z

z

z

b

a x b x









   





   

Additionally, 

   

 

, ,

, .

x x x x

x x

x x

x x

a x b x a x b x

a b

b a

b x a x









   





   

 

Finally,  
2

, xx x xx a aa x x aa     . Thus,  ,x xa x a x   is a nonnegative real 

number, and   0,x xa x a x    if and only if 0xa   for every x G .  

 

The relationships among the * operator, the inner product, the norm, and the trace map 

are explored in the following lemmas. 

 

Lemma 3.6. Let G be a group. For all elements G ,    *, tr   . 

 

Proof. Let xa x   be an element of G . Then 
* 1

xa x  , so 

 

     * 1tr tr x xa x a x    . 

 

But the trace map produces the coefficient of the group identity element. In the product, 

we get the group identity element exactly when each x multiplies its inverse. So for each 

x, since xa  is the coefficient of 1x  in *  we get 
2

x x xa a a  attached to the group 
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identity. Summing all of these gives us 
2

xa  as the coefficient of the group identity of 

the product *  as a whole. Hence,    
2*tr xa     .  

 

Lemma 3.7. Let G be a group. For all elements G , tr   and tr  . 

 

Proof. Let xa x   be an element of G . Then 1tr a  . Also, 

 

 
1 2

1 2
2 2 2

1

1

x x

x

a a a


 
   

 
  . 

 

But the square root function is an increasing function. So since 
2 2 2

1 1

1

x

x

a a a


  , we 

have 

 
1/2

1/2
2 2 2

1 1 1

1

tr x

x

a a a a 


 
     

 
  

and 

1 1

1

tr x

x

a a a 


    .  

 

Finally, we can put all of these definitions and lemmas together in order to help prove 

that complex group rings have Jacobson radical 0. 

 

Theorem 3.8. For all groups G,   0J G  . 

 

Proof: Let G be a group. Fix  J G  . By Lemma 3.2, 1 z  is invertible for every 

z . 

 

Define :h G  by    
1

1h z z


  , and define :f   by     trf z h z .  
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Note that elements of  h  commute: Let ,y w . Then 

 

    

 

  

1

1 1

1

1

1 ,

y yw

y w wy

w y

y w w    

  

 

 

 



 

  

  

 

 

and so  

      

  

   

11 1

1

1 1

1 1 1 1

1 1

1 1 .

y w w y

y w

w y

   

 

 

 



 

      

    

  

 

 

So for 0,z z  , we have 

 

       

       

     

1 1

0 0

1 1

0 0

0 0

1 1

1 1 1 1

.

h z h z z z

z z z z

z z h z h z

 

   



 

 

    

       

 

  

 

So          0 0 0h z h z z z h z h z   , and by Lemma 3.3 we have 

 

       0 0 0h z h z z z h z h z   . 

Thus, 

     0 01h z z z h z h z     . 

 

For a fixed z , if 0z  is close to z , then 0z z  is small. So we can make 0z  sufficiently 

close to z , so that  00 0.5z z h z   . Then  00.5 1 z z h z   , so 
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         0 0 00.5 1h z h z z z h z h z      . 

 

That is,  0h z  is bounded in a neighborhood of z . 

 

Next, we show that f  is an entire function. Recall from Complex Analysis that a 

function f is entire if it is analytic at every point of the complex plane; a function f is 

analytic at a point z if its derivative  'f z  exists at every point in some neighborhood of 

z. We have 

 

                     0 0 00 0 0h z h zh z h z z z z z h z h z z z h z h z          , 

 

and thus 

   
         

        

0

0 0

0

22

0 0 .

h z h z
h z h z z z h z h z

z z

h z z z h z h z

 

 


    

  

 

 

Recall that the trace map is -linear, so 

 

       
          220 0

0 0

0 0

tr tr tr
f z f z h z h z

h z z z h z h z
z z z z

 
  

    
  

. 

 

Since  tr    for all G   and  0h z  is bounded near z , 

 

   
  

0

20

0

lim tr
z z

f z f z
h z

z z








. 

 

So f  is an entire function with     2
' trf z h z . 
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We now need to find the Taylor series for f about the origin. Recall that for any function 

k that is analytic at all points within a circle C centered at 0w , its Taylor series centered at 

0w  converges to k at each point w in C. That is, 

 

 
 

 
( )

0

0

0 !

n
n

n

k w
k w w w

n





  , 

 

where 
 n

k  denotes the n
th

 derivative of k, with the 0
th

 derivative denoting the function k 

itself. We will apply a Complex Analysis result that says that if a series of the form 

 0

0

n

n

n

a w w




  converges to  k w  in some circle centered at 0w , then the series is the 

Taylor series of the function k [1, p.130]. 

 

For  0n  , set    
0

tr
n

i i

n

i

s z z 


 . Then 

 

        

 

 

   

 

 

  

0

1

0

1

0

0 0

1 1

0 0

1 1

tr

tr

tr 1

tr 1 1 1

tr 1

tr 1

tr .

n n

n
i i

i

n
i i

i

n
i i

i

n n
i i i i

i i

n n
i i i i

i i

n n

f z s z h z s z

h z z

z z

z z z

h z z z z

h z z z

h z z



 

  

  

 













 

 

 

 

  

 
  

 

 
   

 

  
     

  

  
    

  

  
    

  









 

 

 

 

 



 

29 

So by Lemmas 3.7 and 3.3, 

 

        1 1 11tr
n nnn

nf z s z h z z h z z 
    . 

 

Earlier we saw that  0h z  is bounded in a neighborhood of z . Specifically,  0h z  is 

bounded in a neighborhood of 0. So for 0z  sufficiently close to 0, say 0

1

2
z


 , then 

 

     

 

 

1 1

0 0 0 0

1

1

0

0

lim lim

1
lim

2

1
lim

2

0.

n n

n
n n

n

n

n

nn

f z s z h z z

h z

h z






 

 







 





 

 
   

 





 

  

Thus,      0 0 0

0

lim tri i

n
n

i

f z s z z 





  , where  0

0

tri i

i

z 




  is the Taylor series expansion 

for  0f z  in a neighborhood around the origin. Since f is an entire function, the Taylor 

series converges for all z . This shows that for all  J G  , 

 

 lim  tr 0n

n



 . 

 

But suppose that   is a nonzero element of  J G , and let 
2*   . We will 

show that  2tr 1
m

   for all 0m , contradicting that  lim  tr 0n

n



 . This will show 

that there can be no nonzero elements of  J G . 
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Since  J G  is an ideal of G  and  J G  , then  J G  . Also, 
*   since 

 

   
* * *

* * ** *
*

2 2 2 2

   
 

   

 
      
 
 

. 

 

So by Proposition 3.4,    *
*

n n
n

     for all n . 

 

Then by Lemma 3.6, 

 

   
2*

2 2 2

tr
t 1

,
r

 






 
    . 

 

Suppose that for some 0k  ,  2tr 1
k

  . Then 

 

         
1

2* 2
2 2 2 2 222 2 22tr tr tr 1, tr 1

k k k k kk kk k

        
  

       
 

. 

 

So by induction,  2tr 1
m

   for all 0m , which contradicts that  lim  tr 0n

n



 . Hence, 

there are no nonzero elements of  J G , and thus   0J G  .  

 

Passman shows that when F is a field, the group ring FG  is artinian if and only if G is 

finite [3, p. 7]. This, together with Theorem 3.9, allows us to conclude that G  is 

semisimple if and only if G is finite. 
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Conclusion 

 

There are many further avenues to explore when it comes to group rings. As we 

mentioned earlier, one could investigate the zero divisor problem as it applies to free 

groups and supersolvable groups, as well as searching for an resolution to the general 

conjecture. We barely scratched the surface in this paper when it comes to 

semisimplicity. General conditions under which a group ring is semisimple (or even 

Jacobson semisimple) are highly sought after. The interested reader can investigate the 

final chapter of [3] for a more detailed list of open problems. Although [3] was first 

published in (1971), many of these questions appear to still be unresolved. 
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