
John Carroll University John Carroll University 

Carroll Collected Carroll Collected 

Senior Honors Projects Honor's Program 

Spring 2016 

Human Embryonic Stem Cell Research vs. Alternative Stem Cell Human Embryonic Stem Cell Research vs. Alternative Stem Cell 

Research: Is there a compromise? Research: Is there a compromise? 

Halle Herringshaw 
John Carroll University, hherringshaw16@jcu.edu 

Follow this and additional works at: https://collected.jcu.edu/honorspapers 

 Part of the Ethics in Religion Commons, and the Other Cell and Developmental Biology Commons 

Recommended Citation Recommended Citation 
Herringshaw, Halle, "Human Embryonic Stem Cell Research vs. Alternative Stem Cell Research: Is there a 
compromise?" (2016). Senior Honors Projects. 92. 
https://collected.jcu.edu/honorspapers/92 

This Honors Paper/Project is brought to you for free and open access by the Honor's Program at Carroll Collected. 
It has been accepted for inclusion in Senior Honors Projects by an authorized administrator of Carroll Collected. For 
more information, please contact mchercourt@jcu.edu. 

https://collected.jcu.edu/
https://collected.jcu.edu/
https://collected.jcu.edu/
https://collected.jcu.edu/honorspapers
https://collected.jcu.edu/honors_program
https://collected.jcu.edu/honorspapers?utm_source=collected.jcu.edu%2Fhonorspapers%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/541?utm_source=collected.jcu.edu%2Fhonorspapers%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/13?utm_source=collected.jcu.edu%2Fhonorspapers%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://collected.jcu.edu/honorspapers/92?utm_source=collected.jcu.edu%2Fhonorspapers%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mchercourt@jcu.edu


1 
 

 

 

 

 

 

 

 

 

 

 

 

 

Human Embryonic Stem Cell Research vs. Alternative Stem Cell Research:  

Is there a compromise? 

 

By Halle Herringshaw 

John Carroll University 

Senior Honors Project 

Spring 2016 

 

 

 

 

 

 

 

 

 



2 
 

Science has approached research on human stem cells from many angles. Excitement 

exists over the possible treatments that may come from research on human embryonic stem cells, 

but there are concerns about the ethics of such research. After analyzing the different methods 

science has applied to human embryonic stem cell research, I will explore the underlying reasons 

that scientists, ethicists, and theologians still disagree on human embryonic stem cell use.  To 

this end, I am going to analyze different research studies that have been conducted, the results 

they have produced, and any completed clinical trials with human subjects. For example, in the 

fall of 2014, a clinical trial in Japan was started to treat degenerative eye disease with induced 

pluripotent stem cells (Cryanoksi 2014). The subject of this trial was the first human treated with 

these cells. With the results of this trial and other clinical applications, I will compare recent 

studies with past studies. Using a representative set of scholarly articles and ethical critiques, I 

plan to examine the research, clinical trials, and medical practices that have been done with 

embryonic stem cells versus human adult cells and other stem cells.  I will then survey the 

application of this research in medicine, examine efforts to compromise (specifically those 

involving induced pluripotent stem cell research), and analyze the progress that is being made 

medically and ethically. 

Government policy plays a major role in the embryonic stem cell debate in terms of the 

funding given to human embryonic stem cell (hESC) research and which hESC lines may be 

used for research. Policies change depending on the presidential party in office, which party has 

the upper hand in Congress, and influences from private political groups. In 1973 when the 

Supreme Court legalized abortion as the outcome of the Roe vs. Wade court case, the United 

States government became concerned about the aborted fetuses and their use in research. This 

concern led the government to ban any federal funding for embryos and fetal tissue in 1974 
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(Biotechnology Timeline 2012). Once embryonic stem cells were derived in 1998, the debate 

over funded and authorized research on embryonic stem cell lines arose, and restrictions were 

made on these two issues for human embryonic stem cell research. One of the main advocates 

for hESC research remains the National Institutes of Health (NIH), which is one of the largest 

government medical research agencies in the world. In August of 2001, President George W. 

Bush allowed NIH funding on already existing human embryonic stem cell lines since their 

discovery, but no new hESC lines could be created (Monitoring Stem Cell Research 2004). 

While this showed progress for federal funding on medical research with hESCs, many still 

believed Bush’s policies to be very limited. President Bush slightly modified his guidelines in 

2005. In March 2009, President Obama revoked the embryonic stem cell policy guidelines put in 

place by Bush, with the purpose of expanding “NIH support for the exploration of human stem 

cell research, and in so doing to enhance the contribution of America's scientists to important 

new discoveries and new therapies for the benefit of humankind” (Obama 2009). This led me to 

investigate how the research done now has been funded and how the funding is distributed 

between the research for human embryonic stem cells, adult stem cells, and induced pluripotent 

stem cells. 

Three Cell Lines 

To investigate the use of human embryonic stem cells (hECSs) versus adult stem cells 

and induced pluripotent stem cells (iPSCs) in science and medicine, a clear understanding of the 

differences between the three stem cell lines is necessary. Stem cells offer great potential in 

healthcare in terms of regenerative medicine and cell-based therapies, which are treatments in 

which damaged cell tissue can be repaired by specific cells differentiated from induced stem 

cells (Stem Cell Basics 2015). Understanding the different qualities of these three stem cell lines 
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will aid in interpreting the healthcare advantages as well as ethical issues associated with each 

cell line.  

 Found in multicellular organisms, stem cells are undifferentiated, unspecialized cells that 

are capable of mitotically replicating themselves over long periods of time. This self-replication 

is referred to as proliferation, and can aid some organisms in cell replacement and repair. An 

example of this is the presence of stem cells in the deepest epidermal layer of our skin, the 

stratum basale. Basal stem cells continuously replicate, pushing new cells up towards the surface 

of our skin, renewing our skin as dead cells fall away from its surface. Stem cells are also 

unspecialized, which means the cell does not have structures and functions specific to a certain 

tissue. However, they are capable of differentiating into specialized cells. Cell differentiation is 

when an unspecialized cell develops into a cell that has specific structures and functions. This 

leads to capabilities of cell-based therapy to treat many diseases (Stem Cell Basics 2015).   

 One specific stem cell type is human embryonic stem cells, which are stem cells derived 

from human embryos in the preimplantation-stage. The preimplantation-stage exists before an 

embryo is implanted on the uterine wall (Stem Cell Basics 2015).  In research, hECSs are 

obtained from in vitro fertilization of eggs, outside of the female’s body.  The embryos of this 

preimplantation-stage are called blastocysts, and it is from the inner cell mass of blastocysts that 

hECSs are precisely derived (Barad, et al., 2014). hECSs possess the ability to differentiate into 

any tissue cells of the human body, specifically cells of the embryonic germ layers capable of 

developing tissues in the body. This ability is defined as pluripotency. hECSs also possess the 

quality of self-renewal, remaining in a state of undifferentiation, and therefore are good cells to 

keep cultured in a lab because they remain capable of differentiation (Narsinh, et al., 2011). 

hECSs are suspected to serve as a very promising treatment method to many diseases, such as 
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diabetes, heart disease, muscular dystrophy, etc., due to their capabilities of differentiating into 

any specialized tissue types (Stem Cell Basics 2015).   

 Human adult stem cells (ASCs), also called somatic stem cells, are those not derived 

from human embryos or reproductive cells. Adult stem cells are undifferentiated cells derived 

from the body. The difference between adult stem cells and hECSs is that adult stem cells can 

typically only differentiate cell types of the tissue or organ from which they originated (Stem 

Cell Basics 2015).  Adult stem cells play a role in maintenance and tissue repair. They have 

shown to be effective in transplantation therapies, one example being the transplantation of adult 

bone marrow stem cells, or hematopoietic stem cells. In the 1950s, bone marrow transplantation 

was performed between identical twins. In 1968, bone marrow transplantation therapy was done 

on non-twin siblings, and in 1972, the first bone marrow transplant successfully occurred 

between a donor and patient that were unrelated. This was a huge stride in medical treatment 

using adult stem cells (History of Transplantation 2016). One disadvantage to human adult stem 

cells is that there is a limited quantity of them in tissues, and outside of the body they do not 

replicate well. However, it has been discovered that they are capable of being reprogrammed to 

form other cell types, such as induced pluripotent stem cells (Stem Cell Basics 2015).   

 Induced pluripotent stem cells (iPSCs) are reprogrammed human adult cells, capable of 

differentiating into any tissue cell type. In 2006, Shinya Yamanaka genetically modified adult 

stem cells by the transfection of genes for four fibroblast-specific transcription factors, Oct3/4, 

Klf-4, Sox2, and c-Myc (Yamanaka  and Takahashi  2006). Transfection is the transfer of genetic 

material and fibroblasts are the cells that make up connective tissue in the body. These genes 

genetically manipulated the adult cell, inducing pluripotency and differentiation capabilities that 

mimic those of hESCs. One advantage of iPSCs is that they avoid many of the ethical problems 
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hESCs face because producing iPSCs does not require the destruction of human embryos. Also, 

iPSCs can be autologous stem cells, meaning they are derived from the same body or individual, 

so they are not subject to immune rejection like hESCs may be (Barad, et al., 2014). 

Ethical Issues 

The use of human embryonic stem cells in research has been a hot topic of debate since 

1998 when the first embryonic stem cells were isolated and grown from human embryos (Stem 

Cell Basics 2015). The debate peaked especially after President George W. Bush in 2001 

permitted funding on embryonic stem cell research only on already existing stem cell lines 

(Monitoring Stem Cell Research 2004). Since then, political challenges and changes have been 

made to permit the restricted use of stem cells in research and medicine. Embryonic stem cell 

research has been reviewed and challenged or supported from biological, medical, ethical, and 

religious standpoints.  

 The main issue of the hESC debate is that a live human embryo must be destroyed or 

broken down into its separate components in order for hESCs to be obtained. However, hESCs 

are very promising for understanding how to better cure diseases due to their capabilities of 

differentiating into any cell type that can then form tissues and organs in the human body (Stem 

Cell Basics 2015). hESC research could lead to a groundbreaking understanding of how cancers 

and diseases develop, as well as creating cell-based therapies from generated ESCs that would 

replace damaged or detrimental tissue in the body (Stem Cell Basics 2015). While hESC 

research has the potential to treat and possibly cure several diseases, many people are still 

opposed to the fundamental issue of a “person”, the embryo, being killed for the purposes of 

research. 



7 
 

 After President Bush’s funding policy was put into effect in 2001 and followed by many 

counterarguments, the President’s Council on Bioethics emphasized that the main concern 

surrounding almost every argument and counterargument is the moral status of the human 

embryo (Monitoring Stem Cell Research 2004). Does the human embryo qualify as a who, 

possessing personhood, or as a what, equating to just a mass of cells? Many opposing hESC 

research believe that the embryo is a person upon conception, or fertilization. Several religions 

believe that not only is the embryo considered to be a person at conception, but it also has 

obtained its own soul (Sandel 2015). This embryo must then have the same undeniable human 

rights as you or me, once it gains the status of a person. This status of personhood comes from 

the fertilized egg cell being able to self-direct, integrate, and function as a progressive unit in the 

early stages of existing as a human organism (Hurlbut 2005).  One opposing argument states that 

only after implantation of the embryo into the uterine lining occurs, which is typically after 

fourteen days, can the embryo be considered a person. This develops the idea that the human life 

is not equal at every stage in its development; at each phase, the organism is a different entity of 

life until it reaches full human status (Sandel 2015). This claim is disputed by those against 

hESC research, who claim the human embryo displays continuity throughout its entire existence 

and “is a whole living member of the human species in the earliest stage of natural 

development… [that] will, by self-directed integral organic functioning, develop to the next more 

mature stage” (Hurlbut 2005). A human adult was once an embryo, so the claim is made that the 

moral value of the embryo must therefore be recognized. 

 Human embryonic stem cell research brings forth the issue of the human dignity and 

inviolability of the embryo, if it were to be deemed a “person”. The lack of regard and 

destruction of a human life would be immoral and would demonstrate the insignificance of a 
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human life. Dr. William B. Hurlbut made the claim that “As we descend into an instrumental use 

of human life, we destroy the very reason for which we were undertaking our new therapies; we 

degrade the humanity we are trying to heal” (Hurlbut 2005).  A counterargument to this follows 

that even if the embryo is not found to be a person yet, it is still recognized as an important, life-

giving entity and should not be destroyed for the purpose of weightless or inappropriate activities 

(Sandel 2015). hESCs would be used positively for the purpose of biomedical advancements and 

treatments, aiming to help those suffering from diseases. Embryonic stem cells can differentiate 

into specific cell types, possibly allowing for the regeneration of cells and tissues that can treat 

diseases and aid in therapy for macular degeneration, spinal cord injury, stroke, heart disease, 

diabetes, osteoarthritis, etc. (Stem Cell Basics 2015). By denying the use of hESC research, we 

are disregarding the human life of diseased individuals who could possibly greatly benefit from 

this research. In contrast to this argument, bioethicist Daniel Callahan, who presented his 

testimony in front of The President’s Council on Bioethics, brings forth the idea that while 

medical research is important for advancements in healthcare, government funding could be put 

towards many other things that could improve human life, such as current treatment for diseases 

and better living conditions. Callahan claims that money could be “spent on something else that 

would bring great benefits as well, whether on public health, education, job-creating research, or 

on other forms of scientific research.” He was emphasizing that the moral imperative to conduct 

research “becomes ‘too high’ when it begins to encroach upon, or tempt one to put aside, other 

important values, obligations, and social needs” (Callahan 2003).  In contrast, the President’s 

Council on Bioethics points out the argument that it is the motivation of biomedical science to 

help those suffering with pain and sickness rather than to save those embryos that are frozen in a 
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‘freezer,’ and the “claims of human embryos cannot simply trump the claims of promising 

medical research” (Monitoring Stem Cell Research 2004).   

 Another ethical view supporting the use of hESC research is that after conception and 

during embryonic development, the human embryo does not have functional capabilities of a 

human being, such as consciousness, nervous system maturity, and use of the senses. This 

supports the claim that the embryo cannot yet have the moral status of personhood. The opposing 

view on this matter identifies that there is not a defined moment of functional capabilities where 

we claim that right then the embryo can be classified as a person. Functional capabilities develop 

over time. Also, the argument can be made that “if human worth is based on actual manifest 

functions, then does more of a particular function give an individual life a higher moral value?” 

(Hurlbut 2005). Would those at different functioning capabilities, such as youth, geriatrics, 

intellectually disabled, etc., be considered less morally valuable? 

 An issue of concern is the comparison between the natural, unassisted embryo losses that 

frequently occur upon attempted conception versus the amount of embryos lost or destroyed due 

to hESC research. During natural conception attempts, many eggs may become fertilized into 

embryos by sperm; however, the rate of these embryos failing to implant themselves on the 

uterine lining and developing into a fetus is fairly high and occurs naturally (Sandel 2015). Those 

opposing hESC research claim that a natural embryo death is weighted much differently than an 

intentional destruction of an embryo, causing death. Natural death of the embryo in the uterus 

cannot be controlled, while intentional killing of an embryo in a research lab can be. The 

counterargument to this claims that the weight of a potential life is not the same as a living life, 

and “the way we respond to the natural loss of embryos suggests that we do not regard this event 

as the moral or religious equivalent of the death of infants” (Sandel 2015). In regards to in vitro 
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fertilization (IVF), many excess embryos are discarded in fertility treatments once the best 

embryos are chosen for IVF. This can be claimed to be the same as the destruction of embryos 

for use in medical advances and treatment. The morality of both embryonic sacrifices should not 

be treated differently (Sandel 2015). 

 Federal policy and funding of hESC dictates what research can be done and how the 

research can be conducted, and for this reason the question of funding is one of the major ethical 

controversies surrounding stem cell research Those opposed to hESC research claim that the 

federal government needs to protect the rights of the human embryos and human life, restricting 

embryo destruction and collection, no matter what the research gain may be. Many also 

disapprove of federal funds going towards research that parts of the public deem unethical. 

Those supporting hESC research argue that it is the government’s responsibility to support the 

medical research that may lead to the decrease of suffering and disease prevalence within the 

government’s nation. The government would be doing harm to the nation by not supporting 

hESC research (Monitoring Stem Cell Research 2004).   

Additional ethical issues include concern over access to expensive patient-specific 

therapies that are developed. This issue revolves “around the lack of equal access to treatment 

based on socioeconomic status and quality of healthcare (Brind’Amour 2009). There is a fear 

that if life-saving therapies are found, only those in upper socioeconomic classes will be able to 

afford them. As stated by Daniel Callahan, “it would seem unjust for money to be invested in 

research that would knowingly end in treatments or therapies that could not be afforded by 

government trying to cover all citizens or available only privately to those with the money to pay 

for them” (Callahan 2003). Also, a feminist ethical view points out the issue of putting an egg 

donor’s health and safety as risk during the invasive extraction of the egg needed to be fertilized 
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to form the human embryo. This is mainly a concern with hESC research if the donor is donating 

strictly for research and not for personal reasons of in vitro fertilization. This ethical issue will be 

discussed further when introducing somatic cell nuclear transfer (SCNT) research. 

In efforts to avoid the moral controversies that hESCs brings forth, science has been 

working towards methods to produce cells that can act as hESCs without the same ethical 

consequences. An alternative method to human embryonic stem cells in biomedical research is 

the use of induced pluripotent stem cells (iPSCs). iPSCs have shown to be a positive alternative 

for reducing the ethical problems of hESC use and for reducing the risk of immune rejection, a 

challenge that hESCs face. They also help to reduce the issue of unfair public access and 

affordability to stem cell based therapies due to iPSCs’ easy obtainability and productivity 

(Bind’Amour 2009). However, iPSCs do bring with them their own ethical issues. One issue 

raised is if the induced form of the stem cell, which is only embryonic-like but has the same 

capabilities, will be legally protected in the same way that hESCs are? While iPSCs are a newer 

discovery, the ethics pertaining to it will continue to unfold. 

iPSCs are exact genetic matches to the patient, eliminating rejection by the immune 

system. However, this quality brings forth the issue of reproductive cloning. There is a difference 

between cloning for therapeutic purposes and cloning to a produce a human life. If iPSCs are 

ultimately capable of generating an embryo that would have the same genetic makeup of the 

patient the cells were derived from, many more issues will arise. The capability of cloning may 

lead to a “slippery slope of dehumanizing practices, such as embryo farms, cloned babies, the use 

of fetuses for spare parts, and the commodification of human life,” an argument pointed out by 

Michael J. Sandel,  a member on the President’s Council on Bioethics in 2004 (Sandel 2015). 

The commodification of human life is giving an economic value to any aspect of the human 
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body, as if it were a commercial item. There is the threat that embryos and fetuses will be 

produced solely to treat the diseases of other humans. A counterargument claims that this is a 

claim that should not be taken lightly, but that the government can create strict regulations on 

banning reproductive cloning, restricting commodification, and regulating the time period of 

embryonic development (Sandel 2015). 

A positive aspect of iPSCs is that they can be generated from fibroblasts in the skin 

layers, so this is much less invasive for the donor compared to the extraction of eggs. Since 

samples are taken from the skin layer, there is a risk of infection of the incision. There is also a 

risk of worsened pre-existing disease symptoms when a skin biopsy is performed, such as 

fibrodysplasia ossificans progressive, a disorder of the connective tissue (Yamanaka 2010). 

However, Changsung Kim recently stated that iPSCs can be easily generated from “patient 

specific cell sources, such as skin fibroblasts, hair follicle cells, patient blood samples, and even 

urine containing small amounts of epithelial cells, eliminating much of the extraction 

complications (Kim 2014).  

The goal of biomedicine now in terms of hESC, ASCs, and iPSC research is to make 

advancements towards treatments and cures for diseases, attempting to avoid the ethical 

controversies.  

Different Techniques 

Now that each cell type has been identified along with its ethical implications, the 

different techniques of deriving these cell types must be examined in order to determine if there 

is a common ethical issue or if different issues arise depending on the extraction and formation 

techniques. With technologies emerging and replacing the use of hESCs, the ethical issues go 
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beyond the status of the embryo. Ethical concerns now include whether creating iPSCs or other 

embryonic-like cells compromises the biological integrity of the human being, what determines 

the value of a cell, and even what it means to be a human being or person. Somatic cell nuclear 

transfer can become capable of creating human life from an induced embryo if the right 

environment can be made, which causes concerns of unethical medical practices. iPSCs may also 

be capable of this in the near future due to their characteristics and rapidly advancing research. 

Does a hESC have a higher importance or significance than an iPSC, even though both function 

almost equally and can potentially create the same result? I am going to identify the specific 

techniques of derivation of each cell line, including clinical examples. I will examine how 

successful each technique has been, recognize what ethical, scientific, or medical issues arise, 

identify the ethics of the clinical research, and determine how each technique relates to the initial 

ethical issues.   

iPSCs 

Induced pluripotent stem cells (iPSCs) are derived from differentiated human somatic 

cells by epigenetics, eliminating the destruction of a human embryo and avoiding changing the 

DNA sequence. Epigenetics is the method by which cells are manipulated to change gene 

expression without altering their DNA sequence. Previously, the use of skin fibroblasts to 

generate iPSCs was favored. However, vigorous research has been done since the discovery of 

iPSCs in 2006 that has lead to the discovery that mononuclear cells, or cells with only one 

nucleus, can be collected and generated into iPSCs from several sources on the body, including 

“skin biopsy, hair follicle progenitor, muscle, bone marrow/mesechymal stem cells, 

lymphocytes, and…viable epithelial cells from urinal track” (Kim 2014). More options for the 

source of the cells allows for easier extraction from the body. From these tissue samples, the 
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somatic cell is reprogrammed by the over-expression of transcription factor genes by methods 

such as viral vector expression, plasmid transfection, mRNA translation, or protein transduction 

(Narsinh, et al., 2011). The four transcription factor genes initially found by Yamanaka for 

successful reprogramming were Oct4, Klf4, Sox2, and c-Myc (Yamanaka and Takahashi 2006). 

Scientists Thomson and Yu soon after found that genes NANOG and Lin28 in conjunction with 

Yamanaka’s method can increase reprogramming efficiency (Zhang 2013).  

The use of iPSCs for disease modeling and tissue regeneration has excited researchers in 

the medical field, leading to research that suggests personalized medicine and patient specific 

cell-based therapy will soon be practiced regularly to treat patients. For example, in 2012, 

researcher Hansen Wang conducted neurological disease modeling with disease-specific iPSC 

lines. These iPSC lines were derived from tissues of patients with Rett syndrome, Fragile X 

syndrome, Down syndrome, Angelman syndrome, Prader-Willi syndrome, and Timothy 

syndrome  (Wang and Doering 2012). Wang acknowledges limitations to iPSC modeling of 

neurogenetic disorders, such as determining “whether typical traits of neurogenetic disorders can 

be observed in the context of iPSC models,” emphasizing that results from iPSC modeling must 

be used in conjunction with other research methods before any conclusions can be made (Wang 

and Doering 2012). However, the use of iPSC lines for disease modeling will help lead to better 

drug screening, drug development, and cell therapy. iPSC models give researchers an 

opportunity to observe living central nervous system cells that function in a similar manner as 

the cells working inside of the diseased patient (Wang and Doering 2012).  

Similar research with iPSC disease modeling has been conducted to study many other 

medical conditions such as Alzheimer’s disease, Parkinson’s disease, heart diseases, and blood 

disorders (Kim 2014). Changsung Kim is predicting a near future medical breakthrough, 
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claiming that “now we can test novel therapeutic options with samples from patients without 

limit. We can even regenerate needed tissue such as patient matching blood, muscles, and 

neuron.” (Kim 2014).  In September of 2014, only six months after Kim made this statement, the 

first human trial with iPSC treatment was conducted to treat age-related macular degeneration 

(AMD) of a 70 year old woman in Japan. Ophthalmologist Masayo Takahashi generated the 

treatment cells and eye specialist Yasuo Kurimoto led the procedure. Fibroblast cells from a 

sample of the woman’s skin were reprogrammed into iPSCs and then differentiated into retinal 

pigment epithelium (RPE) cells. These new RPE cells were grown into a sheet to replace 

damaged RPE cells that were a result of the patient’s AMD (Cyranoski 2014). While the results 

of this first trial are still being monitored for effectiveness and teratoma formation, the iPSC-

derived RPE cell implantation appears to be a huge success and advancement in medical 

treatment (Garber 2015). However, some complications have arisen with the second trial to treat 

AMD with iPSCs that was to be conducted shortly after the first trial. 

This first trial used “individualized autologous iPSCs transplants”, which are transplants 

generated from cells that were derived from the same patient. However, when the iPSCs were 

reprogrammed from the second patient’s skin for the second trial, mutations were discovered in 

the cells that prevented the trial from continuing (Garber 2015). This identifies one of the issues 

with iPSCs, which is iPSCs “often acquire mutations and epigenetic and chromosomal changes 

in culture,” (Garber 2015). To potentially avoid this issue and lead to a continuation of more 

AMD treatment trials, Takahashi identified a new approach of using allogenic cells, or cells not 

from the same patient’s body, to derive iPSCs for RPE generation. These allogenic cells would 

come from already existing banks of iPSCs that were derived from donations of blood tissues. 

This would increase genomic stability and increase efficiency of the procedure. Problems that do 
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come forth with the allogenic method include the risk of immune rejection by the patient’s body 

and the treatment efficacy of only partially matched cells (Garber 2015).  

The future of iPSCs is clearly very promising. The first trial with their use has shown to 

be safe and successful thus far. iPSC research is helping scientists make strides toward 

understanding diseases better, while avoiding ethical issues of embryo destruction and unsafe 

cell extraction from patients. As I have mentioned in previous sections, ethical problems still 

exist in terms of fears of reproductive cloning, embryo farms, and commodification of human 

body parts. A study conducted in 2012 in China demonstrated that iPSCs are fully capable of 

replacing embryonic stem cells. Genetically modified piglets were produced from iPSCs and 

nuclear transfer (NT) cloning, a method that will be explained in further detail subsequently. In 

the study, pig iPSCs (piPSCs) were used as “donor cells for reconstruction of NT embryos by 

traditional cloning and handmade cloning” (Fan, et al., 2013). In the first experiment conducted, 

11,923 cloned embryos from six piPSCs lines and 1,585 cloned blastocysts from a different set 

of piPSCs failed to develop to term in surrogate mother pigs. It was reported that another study 

used 22,260 manipulated embryos from piPSC lines and failed to produce a living cloned pig 

(Fan, et al., 2013). However, in the second experiment of this study, the scientists made 

modifications to their production of the piPSCs, method of transcriptional activity, and treatment 

of constructed embryos. Through this process, they were ultimately able to produce four living 

cloned piglets. While the longest any cloned piglet lived was only 32 days, this was credited to 

the NT process that is known to cause random death. Overall, the experiment demonstrated that 

pigs can be successfully reproduced by using piPSCs as NT donors, which makes researchers 

believe that “in the future, this discovery may allow the generation of genetically modified pigs 

after gene targeting of the piPSCs…represent[ing] an efficient way to produce genetically 
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engineered pigs” (Fan, et al., 2013). This study adds to the fear that soon it may be hiPSCs that 

are being experimented with embryo cloning and genetically engineered babies. As demonstrated 

in this study, thousands of piPSCs were destroyed. If hiPSCs become capable of creating human 

life and if this form of human life is at the scientists’ disposal, it will be hard to contend that 

iPSCs have avoided the ethical issues raised by embryonic stem cell work.  

Concerns relevant to the majority of the research being conducted now on iPSCs include 

issues of informed consent, privacy, and the rights of tissue donors. iPSCs have an unknown and 

expansive potential in scientific and medical research. Progress has already been rapidly made 

since the discovery of iPSCs in 2006, and their full capabilities cannot even be understood yet. In 

2014, researchers reported a study that obtained the attitudes of patients donating their tissues for 

iPSC derivation and research. The main concerns conveyed were about “privacy, 

immortalization of cell lines, commercialization of human tissues, and the creation of gametes” 

(Dasgupta, et al., 2014). A main concern with privacy was whether donors’ personal information 

and name would be protected if it turned out that their cells were of great value and more 

information was needed about the donor. Some were also concerned about whether their 

insurance would be affected if certain genetic information was discovered in their tissue 

(Dasgupta, et al., 2014). Many donors brought up the case of Henrietta Lacks and how her tissue 

cells, known as the HeLa cell line, were used without her consent. If their own cells became 

immortalized, donors felt that they would not be able to control what their cells would be used 

for, no matter what consent forms they signed in the beginning. This issue then returns to the 

privacy concern and identifying the donor in the case that a researcher may want information 

about the donor or a change in consent down the road when discoveries are made with that 

donor’s tissue. 
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If discoveries are made with the cell lines from the tissue of donors that could lead to new 

treatments, medicines, or technologies, a concern exists of “who should be compensated for 

providing tissues and how any resulting profits from the commercialization of research should be 

distributed” (Dasgupta, et al., 2014). While some believe that their biological material is a 

donation and that they should not receive a profit for the work that someone else did, others 

believe that the success of a researcher would not have been possible without the donor’s tissue. 

This issue again returns to the controversial debate over the HeLa cell line; many researchers 

profited greatly from this cell line while Henrietta Lacks and her family were not given 

compensation and did not even know about the impact of her cells. While this would not be the 

case today, many are still concerned with where their cells will end up, who will be making a 

profit, and if the cell line from which the profit is made is being used in a way that upholds the 

donor’s morals.  

Another concern the donors expressed was whether their induced cell lines would be used 

to create gametes, or reproductive cells. Many disapproved of the idea that their biological 

material could one day create another human being that they would not know, or that it would be 

used for the purpose of cloning. However, one donor emphasized that if their induced cells were 

derived into a gamete and then used to create another organ in the body that could save the life of 

another human being, he or she would not be opposed to that. It is certain that in order to 

alleviate some of these concerns, strict regulations should be made upon the consent forms given 

to donors, including informed consent, privacy restrictions, and clarity of anticipated cell line 

uses. While the use of iPSCs does possess its own ethical issues, the problems with iPSCs seem 

to have more attainable solutions than those of hESCs. 
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Nuclear Transfer 

 Another alternative to the use of human embryos to obtain hESCs is the method of 

somatic cell nuclear transfer (SCNT) to derive human nuclear transfer embryonic stem cells 

(NT-ESCs). Just like the derivation of iPSCs, SCNT avoids the ethical dilemma of destroying a 

naturally-occurring human embryo derived from a female. However, an embryo is induced with 

this technique, causing some of the ethical issues of hESCs to remain.  SCNT is the process of 

inserting the nucleus of a somatic cell, or a body cell from a human (such as a skin fibroblast), 

into an enucleated oocyte, or human egg cell with its nucleus removed. The oocytes used are 

mature, metaphase II-arrested egg cells that have “cytoplasmic factors…[that] have a unique 

ability to reset the identity of transplanted somatic cell nuclei to the embryonic state” 

(Tachibana, et al., 2013). Metaphase II is simply a step in the second phase of cell division, 

which in this case is stopped. The embryonic state of the newly formed NT-ESC allows the cell 

to potentially have the same pluripotent and regenerative qualities of both hESCs and iPSCs 

(Trounson and DeWitt 2013). Studies with SCNT to create NT-ESCs were put on the back 

burner when the hype of iPSC research occurred after Yamanaka’s discovery of iPSCs. 

However, in recent years, NT-ESCs have become a focus for many researchers.  

 Shoukhrat Mitalipov and his team of researchers from the Division of Reproductive and 

Developmental Sciences at the Oregon National Primate Research Center demonstrated that a 

primate-modified SCNT method was successful in “reprogramming rhesus macaque adult skin 

fibroblasts into NT-ESCs” (Tachibana, et al., 2013). With this evidence, his research team went 

on to examine whether human metaphase-II arrested oocytes would have the reprogramming 

capabilities to derive usable NT-ESC lines. Mitalipov’s results, published in 2013, demonstrated 

that the nucleus of infant skin fibroblasts (the donor somatic cell) were capable of being fused 
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into the human MII-arrested ooyctes by method of spindle removal and virus-based donor-cell 

fusion (Tachibana, et al., 2013). Spindle removal is the removal of thin fibers called spindles that 

form during cell division. Virus-based cell fusion is using the cellular envelope of virus HVJ-E, 

or “from [an] inactivated hemagglutinating virus of Japan” (Tachibana, et al., 2013). In other 

words, HVJ-E is an inactivated virus that can be used as a cell-fusing agent. As a result of 

Mitalipov’s SCNT method, five stable blastocysts were derived, which in turn produced four 

stable NT-ESC lines that demonstrated pluripotency, no abnormalities, and few transcriptional 

differences (Tachibana, et al., 2013). 

The SCNT method still has limitations and obstacles that need to be further researched, 

and the optimal conditions for the NT method, ooyctes used, and somatic cells used must be 

examined. However, this reprogramming discovery has excited many medical researchers who 

believe that this alternative method to derive hESCs will be more beneficial than the use of 

iPSCs. Natalie DeWitt and Alan Trounson,  researchers at the California Institute for 

Regenerative Medicine, wrote a review about Mitalipov’s discovery, claiming that “the 

generation of SCNT-ESC lines in this study shows it is feasible to generate cellular derivatives 

that may be more robust, genetically stable, and ‘adult-like’ due to the absence of somatic cell 

memory and without the introduction of genetic elements and oncogenes used to derive iPSCs” 

(Trounson and DeWitt 2013). Mitalipov supports this statement by also claiming that after more 

research, NT-ESCs might prove to be more advantageous than iPSCs since the former contain 

“mtDNA almost exclusively originating from the ooycte…[which] ensures that NT-ESCs 

acquire the potential to produce metabolically functional cells and tissues for cell therapies” 

(Tachibana, et al., 2013). mtDNA is mitochondrial DNA that codes for organelle functions and 
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metabolic activity within an oocyte, which is a female reproductive egg cell (Tachibana, et al., 

2013). 

The discovery of NT-ESCs in regenerative medicine and cell therapy does make a stride 

towards eliminating some of the ethical debate of hESCs. However, just as with iPSCs 

production, the derivation of NT-ESCs brings forth ethical problems. Many believe that since 

SCNT produces an embryo from a human egg, that embryo still has the potential to form a 

human being so therefore its destruction strictly for research is unethical. Two researchers from 

the University of California San Francisco Program in Medical Ethics make the claim that those 

“who object to SCNT believe that creating embryos with the intention of using them for research 

and destroying them in the process violates respect for nascent human life” (Lo and Parham 

2009).  This argument takes us back to the initial ethical issues involved with hESCs that are 

trying to be avoided. However, many counter this argument by claiming that the “pluripotent 

entities” or induced embryos are “biologically and ethically distinct from human embryos” (Lo 

and Parham 2009). 

Another main issue is the extraction of human oocytes from female donors, which has 

raised concern about the safety of the donor (Trounson and DeWitt 2013). With the fast-paced 

research of SCNT and drive to make discoveries, there is an increased fear of females being 

exploited for egg donations. Research has demonstrated that when creating embryos by SCNT 

method, hundreds of oocytes are used; some result in cloned embryos and others fail to survive 

(Beeson and Lippman 2006). The rate of success as of 2014 was only about 1 in every 200 

attempts to create viable NT-ESCs (Kuen 2014).  The necessary amount of oocyte donations 

from females to consistently have beneficial research and progress would be very challenging to 

maintain. The derivation of oocytes from donors is claimed to be a painful, invasive, and risky 
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operation. It requires a high dosage of hormones and drugs that stimulate the production of eggs 

in the female body at a rate much higher than normal production (Beeson and Lippman 2006). 

Risks of this operation include: ovarian hyper-stimulation syndrome (OHSS), infections, 

infertility, excessive bleeding, ovarian cancer, renal failure, and surgical complications (Lo and 

Parham 2009, Kuen 2014, Beeson and Lippman 2016). OHSS has been one of the main 

concerns, since patients are at a high risk of developing the syndrome and it can have devastating 

effects and symptoms (Kuen 2014). It is a primary concern that all donors are given adequate 

information and informed consent about the procedure and all of the risks it entails prior to 

agreeing to donate. Mahendra Rao and Maureen Condic, researchers of neurosciences and 

regenerative medicine, put the point well: “because SCNT requires the use of donated oocytes, 

NT-ESCs would be subject to regulatory requirements for assessment of donor-associated risk, 

and oocyte donors would need to be screened for both genetic and transmissible disease” 

(Condic and Rao 2008). 

Also, the same issue that arose with iPSC research presents itself with SCNT method: 

who gets compensation for donations and discoveries? In addition to these issues discussed 

previously, now there is the concern of whether women in poor economic situations or in debt 

from education will subject themselves to risky oocyte donations in order to gain payment in 

return from researchers desperate for oocytes (Lo and Parham 2009). This returns to the issue of 

commodification of human body parts or tissues. If SCNT research begins making more 

discoveries and requiring more oocyte donations, there is fear of unethical methods of obtaining 

oocytes. There are claims that regardless of any risks of donation, donations for SCNT research 

should not entail a payment for the eggs, and only compensation for medical expenses should be 

given (Kuen 2014). Critics of these claims state that because oocyte donation has so many risks, 
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it will be harder to find donors without giving them some sort of payment for their contribution. 

There are volunteer donors for other procedures that are permitted to be given payment, such as 

donors for liver biopsy and female donors of oocytes for infertility treatments (Lo and Parham 

2009).  Overall, the tissue donation and oocyte extraction for SCNT has far more ethical issues 

and risks than the simple tissue extraction for iPSCs. 

Adult Stem Cells 

Another alternative research approach to discovering cell-based regenerative therapies 

without the use of embryonic stem cells is the use of adult stem cells (ASCs). ASCs are 

undifferentiated somatic cells of the body that function in maintenance and tissue repair. ASCs 

display multipotency, which means they can derive more than one specialized cell of the body, 

but not all types of tissue cells of the body like pluripotent stem cells (i.e. hESCs or iPSCs). 

ASCs can be derived from many parts and tissues of the body, including bone marrow, umbilical 

cord blood, placental tissue, peripheral blood, and adipose (fat) tissue. Peripheral blood is the 

blood circulating throughout the entire body, containing red blood cells, white blood cells, and 

platelet cells. The different types of adult stem cells discovered include hematopoietic stem cells, 

mesenchymal stem cells, neural stem cells, epithelial stem cells, skin stem cells, and cardiac stem 

cells (Stem Cell Basics 2015). Hematopoietic stem cells are any stem cells that are blood 

forming, or that give rise to blood cells. They are derived from bone marrow.  Epithelial stem 

cells are those found in the lining of the digestive system. The derivation of all of these ASCs 

does not require the destruction of an embryo or any use of germ line cells.  Many favor adult 

stem cell research because it avoids the ethical concerns that hESC research faces. This method 

also does not create an induced embryo or embryo-like structure.  
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Mesenchymal stem cells (MSCs) are derived from connective tissue of organs in the 

human body. MSCs are believed to be the most multipotent of the adult stem cell types, and they 

have been demonstrated to be capable of differentiating into cartilage cells, muscle and tendon 

cells, fat cells, bone cells, and other cells found in skeletal tissue (Roura, et al., 2015, Kim, et al., 

2015). While these cells are only multipotent, the tissue cells that they are capable of 

differentiating into could potentially offer great stem cell therapies for those specialized parts of 

the body. Many studies have been conducted demonstrating that MSCs have an especially 

promising potential as therapy for cardiovascular disease. A group of researchers from 

Connecticut claim that “a wide variety of cytokines, chemokines, and growth factors are 

produced by MSCs, and many are involved in restoring cardiac function or regenerating 

myocardial tissue” (Kim, et al., 2015). MSCs are patient-derived cells, providing safety against 

immune rejection. MSCs are also immune-privileged, meaning they can tolerate attacks from the 

immune system. This further allows these cells to be used in an allogeneic manner, or in patients 

with a different genetic makeup than from where the MSCs were derived (Kim, et al., 2015). 

This is a major advantage for potential MSC therapies. It was also demonstrated in research that 

MSCs can have enhanced therapeutic functions when they are pretreated with growth hormones 

(Kim, et al., 2015).  

Many research studies have been done to demonstrate the best tissue source for MSC 

derivation. Of the studies done, umbilical cord, bone marrow, placental and adipose tissue have 

all been argued to offer the most usable MSCs for positive research results. Each study claims a 

different tissue source to be the best, demonstrating that research with deriving MSCs still needs 

to be further developed and many more trials need to be completed to accurately identify if one 

tissue is better than the other. The use of bone marrow for regenerative medicine and patient 
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therapies has been common since the 1960s. One study claims that bone marrow demonstrates 

the “strongest evidence for potential stem-cell based therapies” (Kim, et al., 2015). However, 

many recent studies claim that umbilical cord blood (UCB) provides the largest amount of stem 

cells for clinical application (Roura, et al., 2015). Umbilical cord blood has experimentally been 

shown to be more advantageous due to its ability to be “safely and painlessly extracted and long-

term cryopreserved and has a lower risk of transmitting viral infections or somatic mutations 

than adult tissues (i.e. bone marrow)” (Roura, et al., 2015). This was especially demonstrated in 

cardiovascular research. Mesenchymal cells derived from UCB possess low immunogenicity and 

the capability to be used for allogeneic transplantation (Roura, et al., 2015). A human clinical 

trial in Korea used UCB-MSCs transplantation on four patients to successfully improve the 

patients’ Buerger’s disease and chronic limb ischemia. Buerger’s disease is when obstruction 

occurs in the arteries and veins in the hands and feet, and the patients chosen for the clinical trial 

had already been treated with existing medical therapies that were unsuccessful. The results of 

the trial indicated that due to successful UCB-MSCs transplantation, all four patients had 

improved blood circulation throughout their limbs, shortened healing time for ischemic ulcers, 

and a reduction in pain (Kim, et al., 2006). 

Other studies suggest that when adipose tissue is compared to bone marrow and placental 

tissue, “harvest and isolation of MSCs from adipose tissue consistently showed higher yields 

than MSCs” (Vangsness, et al., 2015). However, adipose tissue does require a more extensive 

processing after harvest than other tissue sources, which is unfavorable in a research setting. In 

2014, MSCs derived from adipose tissue (AD MSCs) were used in a human clinical trial for 

articular cartilage regeneration and the treatment of osteoarthritis. The AD MSCs were injected 

into the knee of three groups of patients, each group receiving a different cell dosage. Results of 
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the clinical trial of patients in the high dose group demonstrated that the “osteoarthritic knee 

improved function and pain of the knee joint without causing adverse effects, and reduced 

cartilage defects by regeneration of hyaline-like articular cartilage,” suggesting that with more 

extensive research and clinical trials, the use of AD MSCs for articular cartilage regeneration and 

treatment has much potential (Jo, et al., 2014). Overall, the promise of MSCs, regardless of 

which tissue they are derived from, appears to be great for stem cell therapies. As of 2015, there 

are currently 502 clinical trials with the use of MSCs in humans (Vangsness, et al., 2015). 

While the possible therapies with ASCs are promising and already ASCs provide 

treatments for many specific diseases, they lose their appeal to many researchers due to their lack 

of pluripotency. So far, ASCs are limited to creating cell types of their same origin. ASCs also 

do not proliferate as well as hESCs once removed from the body, meaning they cannot undergo 

cell division and multiplication. This makes these cells harder to maintain in culture and in large 

supply for research (Hollowell 2002). A positive find in research that may help with the 

proliferation is the state of quiescence. ACSs are in a quiescence state in the body. Quiescence is 

when the cell cycle is arrested, preventing proliferation and differentiation of ASCs. This frozen 

state is capable of being reversed when the ASCs want to enter back into the cell cycle, 

becoming capable of proliferation again and therefore capable of being regenerative (Rumman, 

et al., 2015). Quiescence may be essential with future adult stem cell therapy research and 

helping the cells maintain their functions (Rumman, et al., 2015).  

As with the use of iPSCs and NT-ESCs for future stem cell therapies, more successful 

research and clinical trials must be conducted for ASCs and more specifically MSCs to be 

considered an applicable and accessible treatment. Each technique presents its own limitations 

and/or ethical issues that must be addressed in each research setting and medical treatment 
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approach, because, as seen with hESCs, ethical complications can limit research capabilities and 

support. Even with the removal of the restrictions placed on hESC research by President Bush in 

2009, there have been a small number of publications involving hESC research compared to 

alternative stem cell research (Esteso and Gearhart 2011). Much of the existing research has been 

done with mouse ESCs, and these studies demonstrate promise for future therapies that can be 

applied to humans. However, they too have to be further investigated and supported.  

Several human clinical trials with hESC-derived cells have been conducted and deemed 

successful. The first attempted clinical trial was done by a company called Geron that used 

hESC-derived cells to treat spinal cord injury. This study was also the first clinical trial with 

hESCs to be approved for by the Food and Drug Administration (FDA). However, this study was 

stopped due to money and “regulatory issues” (Ratcliffe, et al., 2013). Geron continued to 

monitor the results of the study, but at the same time, Geron was conducting two phase-II cancer 

therapy trials and did not have the funds to complete their hESC study. Funds were reallocated 

towards these studies, placing the company’s focus on oncology therapeutics (Ratcliffe, et al., 

2013). In 2011, scientists of a company called Advanced Cell Technology, which is currently 

named Ocata, performed the first human clinical trial with hESC transplantation therapy that 

demonstrated positive clinical benefits (Ilic, et al., 2015, Schwartz, et al., 2012). The clinical trial 

used hESC-derived retinal pigment epithelium (RPE) to treat “patients with Stargardt’s macular 

dystrophy and dry age-related macular degeneration” (Schwartz, et al., 2012). The study 

demonstrated the safety of hESCs since the following conditions were not present in any patient 

in the first four months: “hyperproliferation, abnormal growth, or immune mediated transplant 

rejection” (Schwartz, et al., 2012). The transplantation of hESC-derived RPE improved vision 

for patients with both diseases.  
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 hESC clinical trials are currently being conducted, but the results are preliminary and 

most studies are focusing first on the safety of transplanting hESC-derived cells into humans. 

However, the issue of not only the safety of the patient but also the safety of the human embryo 

remains a main concern for opponents to hESC research. With these clinical trials, the hESCs 

used were derived from an embryo that was destroyed in the process.  

Federal Funding 

Those opposed to hESC research remain concerned over federal funds being used for 

research they find unethical. President Obama’s 2009 Executive Order 13505 states that “the 

Secretary of Health and Human Services, through the Director of NIH, may support and conduct 

responsible, scientifically worthy human stem cell research, including human embryonic stem 

cell research, to the extent permitted by law” (NIH Guidelines 2009). This removed President 

Bush’s restrictions on hESC research, creating controversy with hESC research opponents. In 

2015, the NIH allocated a total of $1.416 billion towards stem cell research. Records from the 

NIH RePORT (Research Portfolio Online Reporting Tools) state the following funding support 

from NIH institutions or centers (NIH IC) to universities, laboratories, or medical centers: $180 

million for hESC research, $159 million for non-human ESC research, $445 million for non-

embryonic stem cell research, and $632 million for non-embryonic non-human stem cell 

research (NIH RePORT 2016). The RePORT shows data from 2012 to 2015, demonstrating that 

funding has decreased over the past four years in all stem cell research areas besides hESC 

research, which increased by $34 million since 2012. The 2016 estimated funding support by the 

NIH shows an increase in funds in all areas of stem cell research, ranging from $9 million to $26 

million. An increase of $26 million is estimated for non-embryonic non-human stem cell 
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research, while an increase of $20 million is expected for non-embryonic human stem cell 

research, or adult stem cells (NIH RePORT 2016).  

It is interesting to note that despite efforts by opponents of hESC research to block 

federal support for this work,, funding has increased and is expected to increase for the future. It 

is also important to include that the RePORT groups iPSC research in the same category as 

hESC research, allocating $180 million in 2015 to both kinds of research. This demonstrates that 

iPSC research is not getting the same attention as adult stem cell research and other forms of 

stem cell research stated above.   

Conclusions 

 Science has discovered alternative methods for stem cell therapy research. The discussion 

is whether these alternative methods are sufficient and possess the same potential for patient 

therapies as hESCs possess, without the same ethical controversies pertaining to hESC research. 

Based on the above review, some conclusions can be drawn about the ethical problems presented 

and the most promising and least controversial stem cell research technique.  

 Overall, the moral status of the human embryo remains at the core of the ethical issues 

involved with stem cell research. This same issue arises with iPSC research, in that there is fear 

of their capabilities of creating induced-embryos. This fundamental issue also comes forth with 

SCNT, since this technique creates an embryo. The concern of the embryo remains at the 

forefront. iPSCs and NT-ESCs are considered to have the most promising comparison to hESCs, 

and yet they still encounter the main ethical issue. In order for iPSCs to surpass this ethical 

dilemma, strong governmental regulations must be made to prohibit unethical production of 

embryos. NT-ESCs can only surpass this issue if the created embryo can be deemed to have 
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lesser of a moral status since it was not created by the natural fertilization of a human egg. This 

matter, however, is of moral opinion and not scientific evidence.  

 Based on the findings for each technique and type of stem cell, it appears that iPSCs 

provide the most promising and genuine evidence of regenerative therapy with stem cells. iPSC 

research avoids the controversial use of an embryo, induces the least amount of harm or risk for 

the tissue donor, and provides positive results of clinical benefits. iPSCs surpass ASCs due to 

their pluripotency. They also surpass NT-ESCs due to ethical concerns of embryo status and 

risks of patient donation. With this in mind, I believe the NIH should be allocating more funds 

towards iPSC research. Based on the records of the NIH RePORT, iPSCs are not given the same 

support as other stem cell research. If compromises are to be made between the ethical dilemma 

of the destruction of a human embryo versus potential life saving stem cell therapies, the focus of 

federal funding and research should turn towards the most promising stem cell research. 
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