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Apps and Autonomy: Perceived
Interactivity and Autonomous
Regulation in mHealth Applications

Thousands of smartphone apps geared toward monitoring health behaviors are released 
regularly. Even as developers flood the market with mHealth apps, consumers seem 
overwhelmed with choices and report lack of sustained use, which raises questions about 
their efficacy. An online survey (N = 513) found that perceived interactivity not only 
has a direct effect but also exerts an indirect effect via greater autonomous regulation 
on users’ attitudes and behavioral intentions toward mHealth apps. Frequency of 
tracking and updating personal data showed significant effects on behavioral intentions. 
Theoretical and practical suggestions for the design and evaluation of mHealth apps are 
discussed.

Keywords: Autonomy; E/M-Health; Interactivity; mHealth Apps; Self-Monitoring

Investments in the mobile health applications (mHealth apps) market are growing, 
with the wearables market estimated to be about $19 billion by 2018 (PharmaVoice, 
2018). Globally, nearly 133 million units of wearables were sold, with fitness and 
health tracking apps being the most popular among millennials (Beaver, 2018). With 
nearly 325,000 health apps already available (Research2Guidance, 2017) and more 
being developed, it is important to understand if and how these apps are effective. In 
2015, less than a quarter (24%) of health apps surpassed a 50,000-downloads mark 
(Berthene, 2016). Associated with these low downloads, other reports suggest lack of 
long-term engagement, suggesting that the sheer availability of apps does not always

https://crossmark.crossref.org/dialog/?doi=10.1080/08824096.2018.1501672&domain=pdf&date_stamp=2018-09-22


H1: Greater perceived interactivity will lead to more positive attitudes (H1a) and
behavioral intentions (H1b) toward mHealth apps.

Self-Monitoring, Self-Determination, and Interactivity

Trying to learn more about daily behaviors, our patterns, and ourselves is an innate
human drive (Fogg, 2003). Hence, interactive technologies that tap into this drive for
constant self-monitoring (e.g., keeping track of calories consumed, steps taken, heart

result in actual use. Research attributes this to a lack of understanding of theory and 
motivational techniques in the design of these apps (Conroy, Yang, & Maher, 2014; 
Shute, 2014). For instance, the motivational technology model (Sundar, Bellur, & Jia, 
2012) proposes that technological affordances, such as interactivity, can positively 
influence individuals’ intrinsic motivation and subsequently promote better health 
attitudes and behavior. The extant research on interactivity has focused mainly on 
Web-based platforms (Yang & Shen, 2018), with limited studies in mobile contexts 
(Gao, Rau, & Salvendy, 2010). Thus, we examine whether perceptions of interactivity 
in mHealth apps affect users’ motivation, attitudes, and intentions.

Interactivity and Perceived Interactivity

Interactivity has been a widely studied concept. While some scholars have argued that 
interactivity is a technological attribute, calling it “actual” or objective interactivity 
(Liu & Shrum, 2002; McMillan, 2002; Sundar, 2004, 2007; Williams, Rice, & Rogers, 
1988), others have recognized the importance of subjective evaluations, also called 
perceived interactivity (Bucy, 2004; Bucy & Tao, 2007; Liu & Shrum, 2002; Wu, 2005). 
Several studies have shown that the mere presence (or addition) of actual interactivity 
does not guarantee correspondingly higher perceptions (i.e., greater subjective evalua-
tions) of interactivity in the minds of users (Bucy & Tao, 2007; Chu & Yuan, 2013; 
Song & Zinkhan, 2008; van Noort, Voorveld, & van Reijmersdal, 2012; Voorveld, 
Neijens, & Smit, 2011). Further, a recent meta-analysis (Yang & Shen, 2018) showed 
that the effect sizes of perceived interactivity tend to be much larger than that of 
objective interactivity.

In the realm of health technologies, McMillan (2002) found that a perception-based 
model was a better predictor of attitudes and relevance than a feature-based one. 
Perceived interactivity mediated the effects of regulatory fit on brand satisfaction (Jin 
& Lee, 2010) and led to greater user satisfaction and repeat use (Willoughby & 
L’Engle, 2015). Gustafson et al. (2014) found that users of an interactive app designed 
to offer continuing care for alcohol use disorders reported fewer risky drinking days 
due to enhanced patient-counselor interaction via the app. Lu, Kim, Dou, and Kumar 
(2014) reported greater behavioral intentions (visiting and recommending a fitness 
center) due to heightened interactivity and media richness. Hence, prior empirical 
research shows that interactivity can influence users’ attitudinal and behavioral out-
comes, leading to the following hypothesis:



H2: Greater perceived interactivity in mHealth apps will be positively associated
with autonomous regulation (H2a) and negatively associated with controlled reg-
ulation (H2b) motives.

The motivational technology model (Sundar et al., 2012) proposes that effects of
interactivity on preventive health attitudes and behaviors are mediated by one’s
intrinsic motivation. Based on this, we explore whether perceived interactivity has
an indirect effect on attitudes and intentions via more autonomous (i.e., more
intrinsic) versus controlled regulation:

RQ1: Does autonomous regulation positively mediate the effects of perceived inter-
activity on attitudes (RQ1a) and behavioral intentions (RQ1b) toward mHealth
apps?

RQ2: Does controlled regulation negatively mediate the effects of perceived inter-
activity on attitudes (RQ2a) and behavioral intentions (RQ2b) toward mHealth
apps?

Self-Monitoring Features in mHealth Applications

Even though automatic tracking of health information is one of the most desired
features (Rabin & Bock, 2011), very few mobile apps include one (Breton, Fuemmeler,
& Abroms, 2011). When a self-monitoring feature is present and used regularly, it
encourages individuals to engage in desirable health behaviors (Klasnja & Pratt, 2012)
such as more intentional physical activity (Consolvo et al., 2008; Turner-McGrievy
et al., 2013) and weight reduction (Mattila et al., 2008). When users deliberately
monitor their everyday activities, these applications foster greater self-awareness and

rate, etc.) are said to enhance perceptions of autonomy (Sundar et al., 2012). An 
advantage offered by mHealth applications is that they encourage constant self-
monitoring or tracking of personal data (Consolvo, McDonald, & Landay, 2009; 
Heffernan et al., 2016). Autonomy is also a central construct in self-determination 
theory (SDT), which distinguishes between autonomous and controlled regulation of 
individual behavior (Deci & Ryan, 2000). Behaviors that are autonomy driven are said 
to be inherently rewarding, allowing for maximum personal growth and development. 
In contrast, behaviors that are determined by external factors (e.g., doctor’s recom-
mendations) are not self-driven. Hence, controlled regulation motives are likely to be 
inversely related to self-monitoring and autonomy-enhancing activities afforded by 
interactive interfaces (Dennison, Morrison, Conway, & Yardley, 2013; Heffernan et al., 
2016). Given interactivity’s potential to boost autonomy (Fogg, 2003; Sundar et al., 
2012), we believe that greater perceived interactivity will be positively associated with 
autonomous regulation and negatively related to controlled regulation. Several studies 
on chronic illness and disease management have provided empirical support for the 
effectiveness of self-regulation in meeting health goals (Maes & Karoly, 2005). How-
ever, we do not know if these findings extend to newer forms of health regulation via 
mobile apps; thus, we examine how users’ evaluations of interactivity in mHealth apps 
contribute toward autonomous and controlled regulation:



RQ3: Does frequent tracking lead to more positive attitudes and behavioral inten-
tions toward mHealth apps?

RQ4: Does frequent updating lead to more positive attitudes and behavioral inten-
tions toward mHealth apps?

Method

Participants

We conducted an online survey on Amazon’s Mechanical Turk (MTurk) platform.
Participants had to be 18 years old or older, users of mHealth apps, and residents of
the United States to participate. Participants received $1.00 for participating. The
sample consisted of 513 individuals (47.5% were female), and the mean age was
30.3 years (SD = 8.3).

Measures

Perceived interactivity
Users’ perception of interactivity toward mHealth apps was measured via 12 items.
The items were adapted from prior studies that tapped into various dimensions of
interactivity, such as active control, responsiveness, two-way communication, etc.
(Leiner & Quiring, 2008; Liu, 2003; Liu & Shrum, 2002; McMillan & Hwang, 2002;
Wu, 2005). An exploratory factor analysis (EFA) with principal axis factoring and
oblique rotation was used to explore underlying factors among the observed variables,
since it examines both common and unique variance (Park, Dailey, & Lemus, 2002).
The results of this analysis show a unidimensional factor for perceived interactivity,
with one factor explaining 49.39% of the variance. The factor matrix showed two
items with poor factor loadings (less than 0.5), which were excluded (Tabachnick &
Fidell, 2012). This resulted in a 10-item, unidimensional scale of perceived
interactivity.

Autonomous and controlled regulations
Autonomous regulation (six items) examined the extent to which participants used
mHealth apps for their intrinsic value and enjoyment. The controlled regulation (six

provide novel insights (Dennison et al., 2013). However, it is unclear what specific 
technological features of mHealth apps are integral to this self-monitoring process. 
Conceptually, this study looked at two types of self-monitoring: tracking (generalized 
monitoring of health behaviors via mobile apps) and updating (specific activities, such 
as editing and customizing personal health information). Self-monitoring is active and 
user driven. In contrast, automatic, sensor-based tracking is more passive, with 
minimal user involvement. Thus, we examine the effects of two unique features of 
self-monitoring in mobile media—tracking and updating personal health information:



items) tapped into extrinsic factors that drove mHealth apps use. These items were 
adapted from Ryan and Connell (1989).

Attitude and behavioral intentions
An overall attitude measure was created using a scale of 15 items, which assessed 
users’ evaluations on how well a set of adjectives described mHealth apps. A beha-
vioral intention measure (five items) captured users’ intention to continue their 
engagement with mHealth applications. These measures were adapted from Sundar, 
Bellur, Oh, Xu, and Jia (2014).

Self-monitoring measures
Frequency of tracking was measured by asking participants how often they keep track 
of changes in their health using an app on a scale from 1 (never) to 5 (very frequently). 
Frequency of updating tapped into how often they update their information on apps, 
measured from 1 (several times a day) to 5 (once or twice a month), reverse coded. 
Users’ perceived competence in using cell phones, prior app downloads, and demo-
graphics were used as covariates.

Results

Findings from multiple regression analyses (Table 1) indicated that perceived inter-
activity positively predicted attitudes (H1a: β = .50, p < .001) and behavioral inten-
tions (H1b: β = .40, p < .001). As proposed in H2a and H2b, perceived interactivity 
was positively correlated with autonomous regulation and negatively correlated with 
controlled regulation (Table 2).

Further, supplemental mediation analyses (Hayes, 2013, PROCESS model 4, with 
5,000 bootstrap samples and 95% confidence intervals) showed that autonomous 
regulation did lead to positive indirect effects, mediating the effect of perceived 
interactivity on attitudes (ab = .05; LLCI = .02, ULCI = .09) and behavioral intentions 
(ab = .11; LLCI = .06, ULCI = .16; RQ1a and RQ1b). Given cross-sectional data, we 
tested an alternative mediation model and found that perceived interactivity mediated 
the effects of autonomous regulation on attitudes (ab = .14; LLCI = .10, ULCI = .19) 
and behavioral intentions (ab = .12; LLCI = .08, ULCI = .17).

Additionally, attitudes also significantly mediated the effects of perceived interactivity 
(ab = .29; LLCI = .22, UCLI = .37), frequency of tracking (ab = .06; LLCI = .03, ULCI = .10), 
and frequency of updating (ab = .04; LLCI = .01, UCLI = .07) on behavioral intentions. 
Controlled regulation did not lead to any significant indirect effects (RQ2a and RQ2b). 
Frequency of tracking (RQ3: β = .09, p = .04) and frequency of updating (RQ4: β = .09,  
p = .04) had a positive influence on behavioral intentions but not on attitudes.



Discussion

The key contributions from this study can be summarized as follows: (a) it is
important to account for users’ subjective experience of interactivity when evaluating
mHealth apps; (b) apps that encourage greater autonomous regulation among users
lead to favorable outcomes; and (c) designs of future mHealth apps need to be based
on theoretical considerations of what features work and why.

Our findings are consistent with the literature on the importance of perceived
interactivity, which significantly impacted both attitudes and behavioral intentions.
This study not only replicates the positive effects of perceived interactivity, typically
studied in Web-based domains (Yang & Shen, 2018), but also extends it to mHealth
apps. Further, the mediation analyses showed that perceived interactivity promoted a
greater sense of autonomous regulation, which subsequently influenced attitudes and
behavioral intentions. This is consistent with prior findings, which have shown that

β B (Std. Error) t sig.

DV: Attitudes

Age .10* .01 (.00) 2.75 .01

Gender −.01 −.02 (.05) −.34 .73

Ethnicity .07 .04 (.02) 1.88 .06

Education −.11** −.11 (.03) −3.03 .00

Income −.02 −.01 (.02) −.60 .55

Prior app download .13** .10 (.03) 3.22 .00

Cell phone competence .11* .13 (.05) 2.80 .01

Perceived interactivity .50** .54 (.04) 12.81 .00

Frequency of tracking −.01 .00 (.03) −.15 .88

Frequency of updating .05 .03 (.02) 1.30 .19

Adj. R2 .38

DV: Behavioral Intentions

Age .08* .01 (.00) 2.02 .04

Gender −.05 −.08 (.06) −1.39 .17

Ethnicity −.01 −.01 (.03) −.38 .71

Education .05 .05 (.04) 1.28 .20

Income −.05 −.04 (.03) −1.28 .20

Prior app download .11* .10 (.04) 2.63 .01

Cell phone competence .13** .18 (.06) 3.10 .00

Perceived interactivity .40** .49 (.05) 9.64 .00

Frequency of tracking .09* .07 (.03) 2.10 .04

Frequency of updating .09* .05 (.03) 2.07 .04

Adj. R2 .33

Note. The VIF scores range from 1.05 to 1.50, suggesting that multicollinearity is not an issue. *p < .05, **p < .001

Table 1 Linear Regression Models on Attitudes and Behavioral Intentions.
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healthcare — Digital health will help drive wearable shipments — Paper records remain a data
hazard for patients. Business Insider. Retrieved from http://www.businessinsider.com/digital-
health-briefing-millennials-are-leading-the-consumerization-of-healthcare-digital-health-will-
help-drive-wearable-shipments-paper-records-remain-a-data-hazard-for-patients-2018-3

intuitive, user choice drives app-selection decisions (Dogruel, Joeckel, & Bowman, 
2015). Supplemental analyses also showed that attitudes significantly mediated the 
effects of perceived interactivity, tracking, and updating on behavioral intentions. This 
could be understood via the theory of planned behavior (Ajzen, 1991), which posits 
attitudes as an important antecedent to behavior. Tests of these theoretically driven 
variables and paths add more nuance to our understanding of mHealth apps.

The two self-monitoring features explored in this study (frequency of tracking 
and updating) positively predicted behavioral intentions and were also positively 
correlated with autonomous regulation. Based on these results, creating incentives 
for frequent “check-ins” via text notifications, reward points, and building other 
active user engagement metrics into these apps are some recommendations to app 
designers. Several users rely on automatic updates, which are convenient. Never-
theless, our findings indicate that those who report frequently (more actively) 
monitoring their everyday health activities show greater autonomous regulation, 
which in turn predicts greater attitudes and intentions. These self-monitoring 
features inform both future app design and research intervention (outcome mea-
sures) strategies.

With survey design, this study explored direct and indirect associations among 
variables. Future research should investigate causal mechanisms that can system-
atically rule out alternative explanations. Examining specific types of mHealth 
apps and experimentally varying the levels of self-monitoring and interactivity 
are fruitful areas for future research. We need studies comparing perceived 
interactivity in mobile-based versus Web-based platforms, with more items that 
tap into other factors (e.g., active control) of this multidimensional construct. 
While frequency of tracking and updating gave preliminary insight into users’ 
behavioral intentions, we need additional measures that can capture the concept 
of self-monitoring more comprehensively. Beyond autonomy, future research 
should also explore the role of competence and relatedness on mHealth app 
evaluations.
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