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Introduction 

 In this project, we explore various mathematical topics as they apply to an assortment of 

card tricks.  We will focus on an examination of theorems applied to the manipulation of cards in 

an attempt to prove why certain card tricks work.  These theorems utilize abstract algebra, 

probability, number theory, and combinatorics.  Many tricks can be explained this way, instead 

of singularly by sleight of hand or other “magical” methods.  We will rigorously prove the 

theorems and principles that explain these concepts, focusing primarily on the card tricks and 

examples presented in Mathematical Card Magic by Colm Mulcahy (2013). 

While the study of pure, theoretical mathematics is very interesting, it is also helpful to 

see how the subject can be applied.  Applications of math are prevalent and can be very practical, 

such as in engineering and economics.  The field of mathematical magic combines the academic 

aspect of mathematics with the entertainment of card tricks and magic.  Thus, this topic shows 

that understanding mathematics can result in something that even non-mathematicians can enjoy.  

For a future teacher, this project could fit in well with a classroom talk in order to help 

demonstrate how math can be fun for kids.  The required sleight of hand and quick thinking 

required by the magic aspect can also prepare the speaker for future work as a teacher. 

Luckily, the topic of math as it relates to card tricks has been well researched.  The 

substance of this project involves examining a book by Colm Mulcahy, a well-known expert in 

the area of mathematical card tricks.  According to Mulcahy, work in mathematical magic started 

in the early twentieth century (Mulcahy xiii).  However, math was a recreational activity possibly 

as far back as ancient Mesopotamian civilizations and the early Egyptian empires (Merzback 7).  

In the middle of the twentieth century, Martin Gardner released large amounts of data on 

mathematical magic, and this is when the field truly began to flourish (Mulcahy xiii).  Mulcahy’s 
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book goes into depth both on the magical and mathematical aspects of the tricks.  While he 

presents theorems and principles, he does not prove the results, or at least not to the extent that 

would be expected in an upper level math class.  Those rigorous proofs are the primary objective 

of this project.  Mathematical Card Magic has such a wide range of examples that it has not been 

necessary to pull tricks from any other sources in this one semester project. 

We start with some mathematical and card related principles which will eliminate 

redundancy and possible confusion about vocabulary when we move into the explanation of 

specific tricks.  In each later section, we will describe a trick and explain it mathematically.  

When selecting which tricks to include in this paper, we chose those that have interesting 

mathematical foundations.  As a secondary consideration we thought of practicality of 

performance, based on the mental mathematics and advanced sleight of hand necessary for 

performance.  We conclude the paper with possible further investigations related to this project. 
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0. General Principles 

 Before examining card tricks in the context of their mathematical basis, it is important to 

have a basic understanding of some fundamental principles.  These principles are a mixture of 

facts related to math and/or cards.  For example, we use the convention that a full deck has 52 

cards with four suits (hearts, diamonds, clubs, and spades). 

 First, the shuffling of cards is clearly of high importance in card tricks.  Unless otherwise 

stated, we assume that any manner of shuffling is sufficient.  Some tricks, such as that in V.b, 

explicitly call for riffle shuffling.  Riffle shuffling (or “riffling”) a deck of cards means dividing 

it into two packets, bending the cards with each thumb, and releasing the cards so that the cards 

intermix in a single pile.  This type of shuffling is often done in tandem with “bridging,” which 

simply re-bends the cards to maintain their shape.  An explanation of riffle shuffling is found on 

page 3 of Mulcahy and many videos online demonstrate this technique.  At other times fake 

shuffling will be required (such as in trick III.a).  There are many different ways to pretend to 

shuffle a deck, with varying degrees of difficulty.  Mulcahy explains different ways to fake 

shuffle in his section on shuffling (1-13). 

 Sometimes, either instead of or in tandem with fake shuffling, the magician must know 

the order of the  cards.  We use the mnemonic word “CHaSeD” to describe a deck ordering 

which seems random, but is easy to remember.  The capital letters in the word CHaSeD refer to 

the four suits and the order of the letters indicates the order of the suits in the deck.  Specifically, 

in a packet of CHaSeD cards, the suits are in this order: Clubs, Hearts, Spades, Diamonds.  

Sometimes these suits allow us to designate magnitude also, such as clubs being less than hearts, 

which is less than spades, which is less than diamonds.  Using this, the magician can remember 
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which cards were present in the packet.  For example, if an ace, two, three, and four are used, it 

is easier to memorize their suits if they are in CHaSeD order than in another order (Mulcahy 13). 

 The dealing of cards is of special importance.  Many tricks (especially the tricks in 

Section I) are completely based on the way the cards are dealt.  Hence, it is useful to note that 

when cards are dealt from the top of a deck into a new stack of cards, the order of the cards is 

reversed.  Conversely, when cards are dealt from the bottom of the deck, the cards remain in the 

same order.  The former of these realizations is especially important for the next section of tricks, 

which is based on COATing.  COAT stands for Count Out And Transfer and refers to counting 

out k cards from the top of an n sized packet and transferring the resulting stack of k cards to the 

bottom of the packet (Mulcahy 35).  As referenced above, the k cards dealt from the top will be 

in reverse order at the bottom of the deck.  Mulcahy uses the term overCOAT to refer to this 

process when 
2

n
k  .  We will simply use the term COAT, and indicate the instances in which 

2

n
k   is required. 

 It is important to know how to count the number of cards in an ordered sequence.  When 

we subtract two whole numbers, we are really counting the number of one-unit gaps between 

those numbers on a number line, as opposed to counting the numbers themselves.  We use this 

principle when determining the distance between two cards in a deck.  For example 8 5 3  , so 

there are two cards in the packet between the card in position five and the card in position eight, 

and there are four cards starting with position five through position eight.  Hence, in general, 

there are 1n k   cards in positions k through n.  This will be especially useful for the section 

on COATs. 
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Another counting idea that is useful when doing card tricks is modular arithmetic.  

Modular arithmetic is sometimes referred to as “clock arithmetic,” because it functions similarly 

to the fact that two o’clock is four hours after ten o’clock: on a 12-hour clock, 10 4 2  .  In 

arithmetic modulo n, the sum of two numbers is equivalent to the remainder when the sum is 

divided by n.  For example 10 4 14   has a remainder of 2 when divided by 12, thus 

 14 2 mod12 . 

 Finally, the Pigeonhole Principle surfaces several times in this paper.  This principle 

states that if n items occupy k spaces and n k , then clearly at least one space must be occupied 

by at least two items.  A discussion of this principle appears in most discrete mathematics books. 
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I. COATs 

We begin our discussion of card tricks by looking at two tricks that rely on properties of 

the COAT procedure. 

 

I.a. Four Scoop Triple Revelation. This trick is a combination of the tricks “Three Scoop 

Miracle” and “Triple Revelation” presented by Mulcahy (25, 37). 

Description of the Trick 

 Start by having three volunteers each pick one card at random from a deck that is 

approximately 13 cards.  They should look at and memorize their cards.  Have them place their 

cards on the top of the deck.  Ask a volunteer for his favorite ice cream flavor.  If necessary, ask 

the volunteer to adjust the name of the flavor so that it is long enough, i.e. more than half the 

deck size (such as changing “mint” to “mint chip” or “peppermint”).  Tell the audience that you 

are going to make a sundae and need to scoop the ice cream.  As a demonstration, COAT the 

cards (as described in the General Principles section) while spelling the ice cream flavor – one 

card per letter.   Then instruct each of the volunteers, in turn, to COAT the cards as described 

above.  Then hand the deck to the last volunteer who placed his card on top.  Have him reveal the 

top card and notice it is his card.  Then hand the deck to the second volunteer and do the same.  

Finally, do this with the remaining volunteer. 

Mathematical Analysis 

This trick is clearly an application of COATing.  We are interested in the top three cards 

and their movements throughout the deck.  Let the deck consist of n cards and the number of 

letters in the flavor be k, with 
2

n
k n  . 
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   Suppose the volunteers choose cards x, y, and z, respectively.  The cards x, y, and z 

begin on top of the deck in this order.  After the first (demonstration) COAT, the three bottom 

cards are z, y, and x, in this order. 

 The “Save at Least 50% Principle” below demonstrates that after 3 COATs, the cards that 

are originally on the bottom of the deck move to the top of the deck, but in reverse order.  

Therefore, after the three COATs performed by the volunteers, cards x, y, and z are again on the 

top of the deck, in their original order. 

Save at Least 50% Principle:  If k cards from n are COATed three times, then provided that 

2

n
k  , the original bottom k cards become the top k cards, in reverse order.  That is to say, three 

COATs preserve at least half the packet – the bottom half – only in reversed order, at the top. 

Proof: Let the deck have initial order 1 2, , , na a a , where 1a  is the top card (dealt first).  Let 

2

n
k n  .  Then, after one COAT of k cards, the ordering of the deck is  

1ka  , 2ka  ,…, na , ka , 1ka  ,…, 1a . 

Note that  1 2, , ,k k na a a   contains n k  cards and n k k  .  So these cards, possibly with 

some additional cards, will be COATed in the next iteration.  Specifically, this next COAT 

moves   2k n k k n     cards in addition to the cards 1, ,k na a .  Thus, the last COATed 

card will be ia , where  

   2 1 1 if

if

k k n n k n k k
i

n n k k

       
 

 
. 

Therefore, after the second COAT the ordering of the deck is  

n ka  , 1n ka   ,…, 1a ,  1n k
a

 
,

 2n k
a

 
,…, ka , na , 1na  ,…, 1ka  . 
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Notice that, as unordered sets,  

      1 1 1 2 11 2
, , , , , , , , , , ,n k n k k n k n k kn k n k

a a a a a a a a a a a        
   

and thus the sequence , ,n k ka a  in the twice-COATed deck contains k cards.  Therefore, the 

third COAT of k cards results in this ordering of the deck: 

na , 1na  ,…, 1ka  , ka ,…,  1n k
a

 
, 1a , 2a ,…, n ka  . 

Finally, since the sequence  1 2, , , n ka a a   contains n k  cards, it follows that the sequence 

  1 1
, , ,n n n k

a a a  
 contains k cards.  This second sequence is clearly at the top of the deck and 

contains the cards that were originally on the bottom of the deck, but in reversed order.∎ 

 

I.b. Ace Combination. This trick is the trick “Ace Combination” presented by Mulcahy but with 

a slight variation (41-42). 

Description of the Trick 

 Have a volunteer choose a three digit number, abc, that will be the combination of a safe.  

Indicate that the keypad only contains prime and composite numbers, so 0 and 1 are not 

available.  Use the first two digits, a and b, to count out a packet of 2a b  cards.  Have the 

volunteer COAT a b  cards c times, where c is the third digit, before handing the combined 

packet back to the magician.  The magician puts this packet out of his and the audience’s sight 

(behind his back or under a table), manipulates the cards, and then shuffles the packet.  The 

magician now produces the shuffled packet to reveal all four aces overturned while the other 

cards are still face down.
1
 

 

                                                           
1
 The magician also has the option of simply revealing the aces, in the case of a less proficient magician. 
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Mathematical Analysis and Trick Explanation 

 Before beginning the trick, the magician assembles the full deck with two aces on top and 

two aces on the bottom.  Upon getting the combination, abc, from the volunteer, the magician 

deals out a cards and then gives the remainder of the deck to the volunteer to count b cards off 

the top.  While the volunteer is doing this, the magician moves the bottom card of the first packet 

of a cards to the top that packet.  After the volunteer gives back the deck, the volunteer puts one 

of the packets on top of the other.  While this is occurring, the magician removes a cards from 

the bottom of the original deck and adjusts the packet so that an ace is on top and bottom.  He 

then sets the remainder of the original deck aside.  The magician places this second a-sized 

packet on the opposite side of the reassembled deck from the other a-sized packet.  Thus, the 

aces are in positions 1, a, 1a b  , and 2a b  in a deck of size 2a b .  Now the volunteer will 

COAT a b  cards, c times.  Since clearly 
2

2

a b
a b


  , the Special 4-Cycle Principle 

described below, with 2n a b   and k a b  , shows that each of these 4 positions will contain 

an ace, after any number of COATs. 

Next the magician puts the cards where he and the audience cannot see them  and turns 

the top and bottom cards over, thus turning two aces the opposite direction of the rest of the 

deck.  The magician then COATs the deck with a b  cards and flips the top card; thus a third 

ace is the opposite direction.  After one more COAT, the magician again turns over the top card 

and thus all aces are facing the opposite direction.  Finally, the magician shuffles the deck to 

disguise how the cards were flipped and presents a deck in which all of the aces are facing the 

opposite way from the rest of the deck. 
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Special 4-Cycle Principle:  Consider a deck of n cards.  If 
2

n
k  , then under a sequence of four 

COATs of k cards, the top card (which starts in position 1) orbits through positions n, n k , and 

1k  , in turn, before returning to the top of the deck.  Consequently, the cards originally in 

positions n, n k , and 1k   also cycle through these positions (and position 1) before returning 

to their original locations. 

Proof: 

Let the deck have initial ordering 1 2, , , na a a .  We refer to the proof of the Save at Least 

50% Principle for the ordering of the deck after successive COATs.  After one COAT, the 

ordering of the deck is 

1ka  , 2ka  ,…, na , ka , 1ka  ,…, 1a  

and 1a  is in position n.  Again from the Save at Least 50% Principle’s proof, after two COATs 

the ordering of the deck is 

n ka  , 1n ka   ,…, 1a ,  1n k
a

 
,

 2n k
a

 
,…, ka , na , 1na  ,…, 1ka   

and 1a  is in position n k .  Next, after three COATs the ordering of the deck is 

na , 1na  ,…, 1ka  , ka ,…,  1n k
a

 
, 1a , 2a ,…, n ka  . 

Since  1 2, , , n ka a a   is n k  cards,   1 1 1
, , , , , ,n n k k n k

a a a a a   
 must be k cards.  Therefore, 

1a  must be in position 1k   and clearly one more COAT puts 1a  in position 1.∎ 
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II. Ditch the Dud 

This trick is exactly “Ditch the Dud” as presented by Mulcahy, and utilizes the game of 

poker (72). 

Description of the Trick 

 “Ask for a spectator who likes poker, as you shuffle the deck.  Have ten cards dealt out 

into a face-down pile, and have that pile further mixed.  Pick up the cards and glance at their 

faces briefly, remarking on how random they are, and yet how they may result in two interesting 

poker hands.  Announce which of you will win.  Deal the cards into a face-down row, and 

alternate with the poker fan in taking cards from one end of the row or the other, until you both 

have five cards.  Compare and see who has the winning poker hand.  Your earlier prediction 

turns out to be correct.” 

Mathematical Analysis and Trick Explanation 

This trick relies on knowing that the ten cards dealt from the top of the deck contain three 

distinct sets of three of a kind, along with one non-matching “Jonah” card.  Therefore, the 

magician must guarantee that the original shuffling of the large deck keeps this set intact (note 

this is a set, not an ordered set, and therefore order need not be preserved).  Upon the removal of 

the ten cards from the full deck, they may be legitimately mixed, again because this is a non-

ordered set.  Based on the Jonah Card principle below, the magician will know that the person 

whose hand contains the Jonah card will lose. 

 The magician must therefore be able to guarantee which hand has this card.  When 

showing the audience that the cards are random and will make interesting poker hands, the 

magician glances to see where the Jonah card is.  Therefore, when dealing the cards face down in 

a line, the magician knows which of these cards is the Jonah card. 
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 The magician, by choosing first, can also determine which cards are in each hand.  As 

Mulcahy points out with his Position Parity property, if only the two cards on the ends can be 

selected, then by always choosing the card next to the card chosen by the volunteer, the magician 

is guaranteed to take all of the cards in even positions, or all of the cards in odd positions, 

depending on the position of the initial card taken.  If the magician selects card one first, and 

then follows the strategy above, he gets all odd positioned cards.  Similarly, if he selects card 10 

first, then the magician gets all of the even positioned cards.  Hence, if the Jonah card is in an 

odd position, the magician can make sure that the hand with all of the odd cards is the hand he 

predicted to lose. 

Jonah Card Principle: If ten cards consisting of three sets of three of a kind and one non-

matching card (a card that forms no pairs with the other cards) are divided into two poker hands, 

then whoever has the non-matching card loses, without fail.  The non-matching card is called the 

“Jonah” card. 

Proof:  Let ten cards consisting of three sets of three of a kind and one Jonah card be randomly 

split into two poker hands of five cards each.  By examining the two hands, it is clear that one 

must have the Jonah card.  This “Jonah hand” will also have four of the remaining nine cards.  

Note that these are four cards chosen from a set of three matching triples, and thus: 

a) The best Jonah hand contains a three of a kind and another card in addition to the Jonah 

card.  This leaves the other hand with three of a kind and a pair, so the Jonah hand loses. 

b) The second best Jonah hand contains two pairs.  This leaves the other hand with a three 

of a kind, so the Jonah hand loses. 

c) The next best Jonah hand contains one pair, plus two mismatched cards in addition to the 

Jonah card.  This leaves the other hand with two pair, so the Jonah hand loses. 
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Since the four non Jonah cards in the Jonah hand are chosen from a set of three matching 

triples, the Pigeonhole Principle tells us that the Jonah hand has at least two matching cards.  

Thus (c) is the worst hand the Jonah hand can have.  Hence, all possible hands are accounted for 

and the Jonah hand will always lose.∎ 
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III. Set Sums 

 The tricks in this section use special sets whose sums help the magician recognize the 

identity of specific cards. 

 

III.a. Little Fibs. This trick is exactly “Little Fibs” presented by Mulcahy (89). 

Description of the Trick 

“Give the deck several shuffles, then deal six cards face down to the table, setting the rest 

aside.  Turn away, requesting that those six cards be thoroughly mixed up.  Have any two cards 

selected by two spectators, who then compute and report the total of the two card values.  From 

that information alone, you promptly name [the number and suit of] each card.” 

Mathematical Analysis 

 This trick, like the trick in the last section, relies on a packet of known cards that appear 

to be randomly shuffled to the top.  Therefore, this trick requires some fake shuffling.  Once the 

magician “shuffles,” the desired set of cards should be on top.  The values of these six cards 

should form a set of 2-summers as defined below.  In order to help the magician remember the 

suit of each card, he puts the cards in CHaSeD order along with numerical order in the trick’s 

preparation. 

 A set of 2-summers is a set S where for every , , ,a b x y S  such that a b  and x y , if 

a b x y   , then either a x  and b y , or b x  and a y .  So, for example,  1,2,3,5  is a 

set of 2-summers, but  1,2,3,4  is not since 1 4 2 3   .  Given a set of 2-summers, we can 

enlarge it using the following lemma. 
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Lemma: If  1 2, , , zB b b b  is a set of 2-summers such that 1y yb b   for every integer y with 

1 1y z   , then for any 1zb   with 1 1 1z z zb b b b    ,  1zB B b 
    is a set of 2-summers. 

Proof: Let  1 2, , , zB b b b  be a set of 2-summers such that for every 1 1y z   , 1y yb b  .  

Let 1zb   .  In order for  1zB B b 
    to be a set of 2-summers, the sums 1 1zb b  , 2 1zb b  , 

…, 1z zb b   must be distinct and different from the sums of any other two distinct elements of B.  

Since 1 ib b  for 1 i z  , it suffices that 1 1 1z z zb b b b    .  Thus, if 1 1 1z z zb b b b    , it 

follows that  1 2 1, , , zb b b   is a set of 2-summers.∎ 

 We show below that the set of Fibonacci Numbers is a set of 2-summers.  So any set of 

cards with values equal to distinct Fibonacci numbers will work for this trick. 

Fibonacci numbers as a set of 2-summers:  Let F be the set of Fibonacci numbers: 

 1,2,3,5,8,13,F  .  Then any subset of F is a set of 2-summers. 

Proof:  The Fibonacci numbers are defined inductively by 1 1f  , 2 1f  , and 1 1n n nf f f    for 

2n   and, therefore, as a set of distinct integers,  | 2iF f i  . 

Note that    2 3, 1,2f f   is a set of 2-summers. 

Now assume  2 3, , , nf f f  is a set of 2-summers.  Then, to show that  2 3 1, , , nf f f   is 

a set of 2-summers, the lemma tells us that it’s sufficient to show that 1 1 2n n nf f f f    .  Since 

the recurrence relation for the Fibonacci numbers is 1 1k k kf f f   , 1 2 1 2n n nf f f f f     .  

Thus, 1 1 2n n nf f f f    , and  2 3 1, , , ,n nf f f f   is a set of 2-summers.  So, by induction, F is a 

set of 2-summers.  It is clear that any subset of a set of 2-summers is also a set of 2-summers.  

Thus, any subset of F is a set of 2-summers.∎ 
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 Therefore, if the set of cards given to the spectators is a set of Fibonacci numbers, then 

the spectators can choose any two cards and the magician can identify these cards based on their 

sum.  For example, if the spectator chooses two cards and reports the sum of 10, then the 

magician knows that only 8 and 2 can make this sum.  Hence, the magician knows the cards used 

were a 2 and an 8.  Using a CHaSeD ordering, the magician can even easily memorize the suits 

of the cards and report this as well.  In the case of the first six CHaSeD Fibonacci numbers, the 

magician would reveal that the volunteer’s cards were 2♥ and 8♣. 

 

III.b. Consolidating Your Cards. This trick is a variation of the trick “Consolidating Your 

Cards” by Mulcahy (93-4). 

Description of the Trick 

 After shuffling, deal out six cards face down from the top of the deck.  Tell the volunteer 

that once you turn away, she is to select three cards from these six, which will be used to 

determine her credit rating.  After she selects her cards, tell her to add the values of the cards 

together, with red cards as negative values and black cards as positive.  Once she reports the 

sum, the magician either reveals that two cards cancel and gives the suit of the remaining card or 

gives the value and suit of all three cards. 

Mathematical Analysis 

 This trick again relies on a packet of known cards that appear to be randomly shuffled to 

the top.  Therefore, after the magician performs some fake shuffling, the desired set of cards 

should be on top.  This set, in any order, consists of 9♣, 3♥, A♠, A♦, 3♣, and 9♥ (note that these 

cards are listed here in CHaSeD order for easy recollection).  This packet is important because, 
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following the convention of red as negative and black as positive, it is  2 1 0 0 1 23 , 3 ,3 , 3 ,3 , 3   .  

This allows for the use of the following theorem. 

Balanced Ternary Principle:  Every integer can be written as a sum of distinct signed powers 

of 3, and this representation is unique apart from cancelations (i.e., each integer has a unique 

balanced ternary representation, where 0 is the “empty” representation).  For example, 

1 02 3 3   and 
2 1 013 3 3 3   . 

Proof:  Assume k  . 

We induct on k. First, note that 
01 3  and it should be clear that there is no other 

balanced ternary representation for 1, so 1  has a unique balanced ternary representation. Assume 

that for every t   with t k , t has a unique balanced ternary representation.  Let 

 0n   such that 3n k  and 13n k  .  Then, by the division algorithm, 3nk q r    for 

some unique integers  1,2q  and 0 3nr  . 

If 0r   and 1q  , 3nk   is a unique ternary representation.  If 0r   and 2q   then 

13 3n nk   , a unique balanced ternary representation.   

Now assume 0r  .  Since r k , r has a balanced ternary representation by the induction 

hypothesis.  Also, since 3nr  , the largest power of 3 that could appear in a balanced ternary 

representation of r is 3n .  First we assume this balanced ternary representation of r does not have 

a 3n  term.  If 1q  , then 3n  plus this representation for r gives a balanced ternary representation 

for k.  If 2q  , then 13 3n nk r    and k has a unique balanced ternary representation. 

Next we assume the representation of r has a 3n  term.  Since 3nr  , the 3n  term must be 

positive.  Also, let 3nx r  , so the balanced ternary representation for x does not have a 3n
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term.  Hence,  3 3 3 3 1n n n nk q r q x q x        .  If 1 3q   , then 13 0 3n nk x     

provides a balanced ternary representation for k, and if 1 2q   , then 13 3n nk x    provides 

a balanced ternary representation for k. 

Hence, it is clear that every positive integer has a unique balanced ternary representation.   

If 0k  , then all of the coefficients of powers of 3 are zero and we have the unique 

“empty” presentation.  Finally, if k is a negative integer, notice that k k  , so we use the 

balanced ternary representation for k  to produce the balanced ternary representation for k.∎ 

 Given this theorem, unless two cards cancel out, the magician finds the balanced ternary 

representation of the sum reported by the volunteer in order to determine which three cards were 

used.  The magician knows two cards cancelled out if the sum provided is a power of 3, since the 

unique balanced ternary representation of a power of 3 is simply that number.  If this is the case 

and two cards cancel out, then the magician reveals that two cancelled and reports the value and 

suit of the remaining card. 

For example, if the volunteer reports a sum of 11, then the magician notices that 

 1 0 23 3 3 11    .  So the cards are 3♣, A♦, and 9♣.  On the other hand, if the volunteer 

reports a sum of 9 , then the magician notices that 23 9    and therefore two cards must have 

cancelled out.  So he reports that two cards cancelled and the other card is 9♥. 
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IV. Monotone Subsequences 

 This section utilizes subsequences of cards which are either constantly increasing or 

constantly decreasing.  Specifically, we use the following result originally proved by Paul Erdős 

and George Szekeres in 1935 (Gasarch 1): 

In any arrangement of  
2

1 1k    (or more) different numbers, there are always 

at least k, not necessarily beside each other, that are in numerical order.  Hence, 

there is always either a rising run or a falling run of length k (or more). (Mulcahy 

269) 

We provide a proof in the case of 3k   as part of our discussion of the next trick, but we do not 

provide the proof of the general result since it is outside the scope of this project. 

 

IV.a. Five that Jive. This trick is adjusted from “Erdős Numbers” by Mulcahy (274). 

Description of the Trick 

 An accomplice waits where he cannot see or hear the trick as the magician selects a 

volunteer.  After shuffling the deck, the volunteer deals out the top five cards, sets aside the rest 

of the deck, and shuffles these five cards.  The volunteer then lays the cards face up, notes the 

randomness of the cards, and turns the cards face down once more.  After the accomplice enters 

the room, the magician reveals two cards and the accomplice announces the identity of the 

remaining three cards (both number and suit). 

Mathematical Analysis 

 This trick relies on a packet of known cards that appear to be randomly shuffled to the 

top.  Therefore, this trick requires some fake shuffling to ensure that the necessary packet of 

cards is at the top of the deck.  This packet should be five cards which both the magician and 
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accomplice have memorized.  The magician and accomplice will have previously agreed on a 

linear order relation on the cards in the packet, so that for any two cards, one is defined to be 

‘greater’ than the other.  Since this is the 3k   case of the Erdős-Szekeres result, there is either 

an increasing or decreasing subsequence of length three.  While the cards are face up, the 

magician locates the monotone subsequence.  After the volunteer flips all of the cards face down, 

the magician flips the cards that are not in the monotone subsequence face up with the 

accomplice present.  The magician reveals cards from right to left to indicate an increasing 

sequence, and reveals cards from left to right to indicate a decreasing sequence.  The following 

theorem proves this 3k   case, which guarantees that the magician need only reveal two cards 

in this manner for the accomplice to announce the identities of the three cards that remain face 

down. 

Special Case of Erdős-Szekeres: For any sequence of five distinct numbers, there is always a 

monotone subsequence of length three. 

Proof:  Let  , , , ,a b c d e  be a sequence of distinct numbers. 

Assume a b .  If b c , then  , ,a b c  is an increasing subsequence.  Similarly, if b d  

or b e , then  , ,a b d  or  , ,a b e  is an increasing subsequence, respectively.  Otherwise, 

 max , ,b c d e .  If c d , then  , ,b c d  is a decreasing subsequence.  Similarly, if c e , then 

 , ,b c e  is a decreasing subsequence.  Otherwise,  min ,c d e .  If d e , then  , ,b d e  is a 

decreasing subsequence.  The only remaining option is if d e , in which case  , ,c d e  is an 

increasing subsequence. 

Now assume a b .  If b c , then  , ,a b c  is a decreasing subsequence.  Similarly, if 

b d  or b e , then  , ,a b d  or  , ,a b e  is a decreasing subsequence, respectively.  Otherwise 
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 min , ,b c d e .  If c d , then  , ,b c d  is an increasing subsequence.  Similarly, if c e , then 

 , ,b c e  is an increasing subsequence.  Otherwise,  max ,c d e .  If d e , then  , ,c d e  is a 

decreasing subsequence.  The only remaining option is if d e , in which case  , ,b d e  is an 

increasing subsequence. 

Thus, in every case the sequence  , , , ,a b c d e  has a monotone subsequence of length 

three.∎ 

 

IV.b. Ten Soldiers. This trick is adjusted from “Ten Soldiers” by Mulcahy (264). 

Description of the Trick 

 This trick has the same procedure as the previous trick, Five that Jive, with the exceptions 

that ten cards are taken from the top of the deck instead of five, and four cards are left to be 

revealed by the accomplice instead of three. 

Mathematical Analysis 

 This trick applies the 10k   case of the Erdős-Szekeres result.  The proof of this case, 

like the general result, is outside the scope of this project. 

 

IV.c. Clear Cut Diamonds. This trick is adjusted from “Slippery Enough” presented by 

Mulcahy (271). 

Description of the Trick 

 The magician selects a volunteer from the audience and gives him the deck to remove the 

diamonds and place them face-up in a line, in whatever order he chooses.  The magician surveys 

the row of thirteen cards (possibly asking the audience to do the same), then has the volunteer 

flip each card face down.  At this point, an accomplice who has neither seen nor heard what has 
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happened so far is brought into the room.  The magician turns over some of the cards (usually 

eight) and the accomplice names (correctly) the cards which are missing. 

Mathematical Analysis 

 This trick works because of statistics and simple communication.  Since there are thirteen 

diamonds in a deck of cards, there are 13!  possible arrangements of the cards in this trick.  Of 

these possible sequences of cards, there is approximately a 98.4%  chance that the sequence has 

a monotone subsequence of length five (Mulcahy 271).  If this is the case, the magician uses 

such a sequence.  If not, then the magician uses the 4k   case of the Erdős-Szekeres result, and 

reveals nine cards instead of eight. 

  The magician reveals cards in the same manner as in Five that Jive.  Since all of the 

diamonds are on the table, the accomplice can easily determine which cards are face down, and 

can use the magician’s cues to determine their order. 
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V. Error Correcting Codes 

 This section deals with the mathematical idea of error correcting codes.  These are codes 

that have a built in mechanism that enables the detection and correction of errors. 

 

V.a. A Horse of a Different Color. This trick is exactly “A Horse of a Different Color” by 

Mulcahy (288-9). 

Description of the Trick 

“An audience member is invited to select any three cards from the deck and lay them in a 

face-up row on the table.  You supplement this row with three more face-up cards of your own 

choosing. 

 “Say, ‘Think of these cards as six horses in a stream.’  Before that sinks in, add, ‘No 

doubt you’ve heard the expression, “Don’t change horses in the middle of a stream.”  Actually, 

that’s exactly what I want you to do.  Please change any one horse – for a horse of a different 

color!’ 

 “The audience member replaces any one of the cards on the table with a new card from 

the deck, subject to the provision that the new card must not be the same color as the one it 

replaces.  Your accomplice now enters the room, and soon identifies which card on the table was 

switched.” 

Mathematical Analysis 

 This trick uses the concept of error correcting codes.  Specifically, it uses a linear binary 

code.  We begin by describing a seemingly easier trick, where the volunteer chooses only two 

cards.  We will then explain how to add a third card from the volunteer without adding any 

actual complexity to the trick.  The code, C, is defined by    : , , , , ,C a b a b a b a b  where 
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 , 0,1a b  and addition is done modulo 2 .  The following logic proves that if a received code 

word is known to contain exactly one error, the recipient can recover the correct code word. 

Assume x is the incorrect digit and assume that  mod2c a b   for the original a and b. 

1) If the received (corrupted) code is  , , , ,x b a b c  or  , , , ,a b x b c , then positions one and 

three do not match and so one of those positions contains the error.  Since a b c   but 

x b c  , the assistant can further pinpoint the location of x. 

2) If the received code is  , , , ,a x a b c  or  , , , ,a b a x c , then positions two and four do not 

match and so one of those positions contains the error.  Since a b c   but a x c  , the 

assistant can further pinpoint the location of x. 

3) If the received code is  , , , ,a b a b x  then the sum of positions one and two, and the sum 

of positions three and four, do not equal the number in the fifth position, and hence there 

is an error in position five. 

Hence, the location of the error is identifiable given only the corrupted code and the 

knowledge that the code contains exactly one error.  Since the code uses a binary system, by 

knowing the position of the error, it is simple to correct the error by switching the corrupted digit 

with the other element of  0,1 . 

 Given the assumption that black cards have value zero and red cards have value one, the 

magician uses the first two cards chosen by the volunteer to choose three additional cards.  The 

volunteer then changes one card’s color (i.e., its value), thus introducing an error to the code 

word.  By applying the logic presented above, the accomplice can then determine which card 

was switched. 
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 Recall that in the description of this trick, the volunteer chooses three cards, not two.  

This extra card is ignored in the magician’s choice of cards and he simply changes the code to 

   : , , , , , , ,C a b z a b z a b a b   where  , , 0,1a b z .  The accomplice performs the same error 

checking as before, except that if no error is detected in the code, then the error must be in the 

third position, which is the position not checked by the code.  Hence, the accomplice detects and 

corrects any single error. 

 

V.b. And Now for Something Completely Different. This trick is exactly “And Now for 

Something Completely Different” from Mulcahy (302). 

Description of the Trick 

 “Give out a deck of cards for shuffling.  Take it back, and fan it to reveal that that the 

cards are all face up.  Comment, ‘These aren’t mixed up very well.  Look, they all face the same 

way!’  Split the deck near the middle, and flip over one half, before riffling the two parts 

together.  Perhaps hand the deck out again for additional shuffling.  ‘That’s better,’ you 

conclude, as you fan the cards again to show that they are well and truly mixed now. 

 “Invite an audience member to select any two cards from the deck and place them side by 

side on the table.  You rapidly supplement these with two cards of your own choosing, to form a 

row of four cards. 

 “’Four random cards, some Red, some Black, some face down!  And now for something 

completely different.  Please change any one card.  For instance, you could just turn one of these 

cards over, or you could switch a [face up] Red card there for a [face up] Black one from the 

deck, or vice versa.’ 
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 “The audience member does as instructed.  Your accomplice now enters the room for the 

first time, and soon identifies which card on the table was switched.  Even better, if the switched 

card is now face down, she can tell whether it was originally Black or Red.  Furthermore, if the 

switched card is face up, she can tell whether it was originally a different color or face down.” 

Mathematical Analysis 

 This trick uses a similar idea as in the previous trick, using a ternary linear code rather 

than a binary code.  The three properties of cards comprising the ternary system will be red 

(corresponding to 1 ), black (1) and face down (0).  The code takes an ordered pair  ,a b , 

where  , 1,0,1a b  , and turns it into an ordered quadruple  , , ,a b a b b a  , where a b  and 

b a  are both reduced modulo 3 with the convention of recording 2 as 1  (note that 2 and 1  

are equivalent modulo 3). 

In a correctly coded message  , , ,s t u v , with  , , , 1,0,1s t u v  , 0t u v   , since 

     3 0 mod3b b a b a b      .  Similarly, since    2 mod3a b a b a b a      , 

s u v  ; s v t   since  a b a b   ; and s t u   trivially.  If we know that a received code 

word contains exactly one error, we can use the facts above to determine the location of the 

error.  Looking at the received message  , , ,s t u v , with exactly one error, the following are true: 

 The error exists in the first position if and only if 0t u v   . 

 The error exists in the second position if and only if s u v  . 

 The error exists in the third position if and only if s v t  . 

 The error exists in the fourth position if and only if s t u  . 

This property shows that if one of the equations is true, the three variables used cannot 

contain the error and the fourth variable must then contain the error.  However, this trick really 
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requires at most one error.  If no error is present, all the above equations will be true.  Therefore, 

this trick has two variations, one where exactly one error must occur and one where at most one 

error must occur. 

 Once the accomplice determines the location of the error, the accomplice can use the 

original coding method to determine what the code word should have been, and hence whether 

the card was originally face down, red or black.  For example, if the presented code is 

   , , , 1,1,1, 1s t u v   , then the accomplice notices that  1 1 1 mod3s u v       and the 

error must be in the second position.  Since 1 1 0u s t      (the equation for position three), 

we know that position two should have contained a zero and, hence the card in that position was 

originally face down. 
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VI. Fitch Cheney’s Five-Card Twist 

This trick is adapted from the trick with the same name presented by Mulcahy (306). 

Description of the Trick 

 The magician selects a volunteer to shuffle the deck and choose any five cards.  The 

magician examines the cards, hides one of the five cards, sets the remaining four cards in a face-

up row, and has the volunteer retrieve an accomplice from outside the room.  The accomplice 

briefly examines the cards and identifies the missing card. 

Mathematical Analysis 

 Unlike many of the other tricks presented, this trick involves no fake shuffling or known 

cards; the accomplice knows nothing about the five cards before entering the room.  Clearly the 

magician is using the four remaining cards to identify the missing card.  Hence, we will examine 

the decision making process for the magician’s selected four cards.  First, since there are five 

cards present and only four suits, the Pigeonhole Principle tells us that at least one suit must be 

used twice.  Thus, the magician hides one of the cards from a duplicated suit.  In order to 

communicate the suit to the accomplice, the volunteer calculates the sum of the remaining cards 

(with jack, queen, king and ace equal to 11, 12, 13, and 1, respectively), then reduces the sum 

modulo 4 with  0 4 mod 4  referring to the fourth position.  The magician places the card that 

determines the suit of the hidden card in the position determined by this sum.  The other three 

cards will communicate the value of the hidden card. 

 Note that there are 13 cards of each suit.  Thus, for any two cards with values a and b, 

6a b  , and so the hidden card and the card that identifies the suit of the hidden card are 

within 6 of each other.  Assuming that a b , the magician hides a if  , 6b a a   and hides b 
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otherwise.  For example, in choosing between hiding 3♥ or K♥, the magician hides 3♥, because 

 13 3,9 . 

 By identifying suits as low to high following the CHaSeD ordering, every card is 

uniquely higher or lower than any other card (i.e., 3♥ is greater than 10♣).  Thus, by applying the 

following rule, the magician can tell the accomplice what number to add to the value of the 

visible suit card based on the relative degrees and order of the remaining three cards. 

Using L, M, H for “low,” “middle,” and “high,” respectively, where LMH means the 

remaining three cards are in the order low, medium, high from left to right: 

 LMH: Add 1. 

 LHM: Add 2. 

 MLH: Add 3. 

 MHL: Add 4. 

 HLM: Add 5. 

 HML: Add 6. 

Thus, the magician can order the four remaining cards in a way that identifies the hidden 

card, both in terms of suit and value. 

For example, assume the volunteer selects 7♣, 7♦, 8♣, J♥, and Q♠.  The magician then 

notes that two clubs are present (the 7 and 8) and that  8 7,13 .  Hence, the 8 is hidden.  Given 

the values of the remaining cards, the magician determines  7 7 11 12 37 1 mod4      and 

puts 7♣ in the first position to communicate the suit of the hidden card.  Since 8 is one card after 

7, the magician needs to communicate that 1 must be added.  Thus, the order of the remaining 

three cards is low, medium, high.  Since hearts are less than spades, which are less than diamons, 
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when the accomplice walks in he will see 7♣, J♥, Q♠, 7♦ and, in that order.  The accomplice 

concludes that the hidden card is 8♣. 
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Conclusion and Personal Reflections 

 Over the course of this examination of the mathematical bases of various card tricks, it 

became clear to me that these tricks use a wide range of mathematics.  The concepts for each 

trick varied widely, from the combinatorics used in COATs and the discrete mathematics of the 

Pigeonhole Principle, to error detecting and correcting codes.  This demonstrated to me that 

mathematics is a wide ranging field, even in applications as seemingly simple as card tricks.  My 

investigation raises the question of how other areas of mathematics may lead to new tricks.  

Thus, my further research into this field might focus on inventing new tricks based on 

mathematics, whether simple or advanced, that I did not examine in this paper.  Additionally, 

certain tricks in Mulcahy’s book seemed interesting mathematically, but I excluded them from 

the paper due to their confusing nature and a lack of consistent performance success.  For 

example, “Lucky Number One and Thirteen” requires either more work or an alteration to make 

it a more easily accomplished illusion (Mulcahy 144-5).  Additionally, in the future I would like 

to examine other sources of tricks such as Magical Mathematics by Persi Diaconis and Ron 

Graham, as well as various works of Martin Gardner.   

 The content of this paper is well suited for demonstrating how mathematics can be fun.  

One possible way I could spread this message is by using this paper as a basis for one or more 

presentations in a high school mathematics class.  Since many of the concepts of the paper are 

accessible to high school students, the presentation of these tricks in such an environment is 

practical.  I would present the tricks, followed by their explanation in mathematical terms.  This 

activity would both promote mathematics as enjoyable and introduce high school students to 

mathematics based on proofs, not just calculations. 
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 Another direction for my future investigation is tricks using other types of cards.  All of 

the tricks in this paper use a standard deck of playing cards, which have three characteristics: 

suit, color, and number.  Since the suit determines the color, one can argue that each card has just 

two characteristics.  It may be rewarding to investigate possible tricks involving more 

complicated decks, such as the cards used in the game Set.  These cards each have four attributes 

rather than three. 

Overall, card tricks are interesting mathematically as well as being interesting to lay 

people.  Their study led me to a better understanding of how math can be applied to seemingly 

unrelated fields in addition to the educational benefits of demonstrating mathematics in such a 

field to stimulate interest.  I gained a deeper understanding of proof as a result of this study, 

moving away from proving typical mathematical results to proving card tricks.  Through such an 

examination, I more fully understand the idea of proof. 
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