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Feedback in Batesian mimetic systems
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We propose a feedback model for Batesian mimetic trophic system dynamics that integrates evolutionary and 
ecological processes including those not directly related to mimicry such as nutrient transfer. The proposed feedback 
circuit includes a previously overlooked link, specifically: selection for predation on the mimetic phenotype, which 
results when predators consume palatable mimics, and which perpetuates predation on the mimetic phenotype that 
drives mimicry. Preservation of variation throughout the feedback loop may also explain polymorphism, suboptimal 
mimicry, and other aspects of mimetic trophic system evolution.

ADDITIONAL KEYWORDS: autocatalysis – mimicry – mutualism – systems.

INTRODUCTION

Batesian mimicry emerges from the dynamics among 
predator, chemically defended prey (model) and prey 
that phenotypically resemble the model but are not 
chemically defended (mimic; Bates 1862, Van-Wright 
1980, Mallet and Joron 1999, Ruxton et al. 2004). 
Mimics evolve phenotypic similarity to a model as 
predators evolve avoidance of the phenotype of the 
toxic species (or is learned; e.g. Sena and Ruane 2022). 
Batesian mimicry is generally thought to be parasitic 
(because the toxic model should not benefit from the 
relationship, e.g. Bates 1862, Fisher 1930, Wickler 
1968, Brower and Brower 1972, Lea and Turner 1972, 
Turner et al. 1984, Huheey 1988, Speed 1993, Ohsaki 
1995, Turner 1995, Joron and Mallet 1998, Edmunds 

and Golding 1999, Mallet and Joron 1999, Speed and 
Turner 1999, Lindstrom et al. 2004, Rowland et al. 
2010, Pfennig and Kikuchi 2012, Aubier et al. 2017b, 
Akcali et al. 2018, Hassall et al. 2018, Anderson and 
de Jager 2020, Kikuchi et al. 2021, Loeffler-Henry 
and Sherratt 2021); however, some have suggested 
Batesian mimetic systems cohere primarily through 
mutualistic processes (e.g. Aubier et al. 2017a, b, 
Fredrickson 2017)—a fundamental element of the 
model presented here.

Mueller (1879) argued that Batesian mimics must 
exist in lower numbers than models (i.e. frequency-
dependent evolution), otherwise predation on mimics 
would be rewarded and fail to deter predation on the 
model. For more than 100 years, Mueller’s constraint 
has been a cornerstone of mimicry dynamics (e.g. Cott 
1940, Dunn 1954, Brattstrom 1955, Gilbert 1983, 
Huheey 1976, 1984, Turner et al. 1984, Mallet and *Corresponding author. E-mail: dkizirian@amnh.org
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Turner 1998, Iserbyt et al. 2011, Kikuchi et al. 2021, 
Prusa and Hill 2021). For example, Joron and Mallet 
(1998: 463) argued: ‘this very powerful frequency-
dependent effect will typically influence the outcome 
of the mimetic association much more strongly than 
merely the frequency-independent effect of relative 
palatability.’ Empirical studies (e.g. Dunn 1954, 
Sheppard 1959, Brower and Brower 1962, Pfennig 
et al. 2001, Harper and Pfennig 2007, Kikuchi and 
Pfennig 2010, Kikuchi et al. 2021) and simulations 
(e.g. Charlesworth and Charlesworth 1975, Turner 
et al. 1984, Speed and Ruxton 2010) have found 
support for the frequency effect while others have 
questioned it (e.g. Brower 1960, Springer and Smith-
Vaniz 1972, Otte 1974, Greene and McDiarmid 1981, 
Randall 2005, Pfennig 2016, Rabosky et al. 2016, 
Prusa and Hill 2021). Notably, Fisher (1930) argued a 
Batesian mimic might be more numerous if the model 
is extremely noxious (Otte 1974) or if the mimic is 
a relatively unimportant prey item. Here, we argue 
feedback dynamics might be at least as important 
as frequency in shaping mimetic trophic systems; 
more important, because of feedback, rewarding 
predation on mimics could drive mimicry rather 
than thwart it (contra Mueller 1879). More generally, 
systems characterized by feedback may generate 
indirect benefits for constituents (e.g. Bondavalli 
and Ulanowicz 1999), hence, predation may present 
benefits, in addition to costs, for prey species.

Intraspecific variation has been documented in 
many aspects of mimetic systems including colour 
pattern, predatory behaviour, prey behaviour, toxicity 
and physiological drive (e.g. hunger in the predator), 
but such variation has not always been understood 
(e.g. Marshall 1908, Dixey 1909, Brown et al. 1974, 
Papageorgis 1975, Fink and Brower 1981, Turner 
1984, Brower and Calvert 1985, Dittrich et al. 1993, 
Speed 1993, Turner and Mallet 1996, Joron and 
Mallet 1998, Mallet and Joron 1999, Turner and 
Speed 1999, Edmunds 2000, Sherratt 2002, Ruxton 
et al. 2004, Mappes et al. 2005, Rowland et al. 2010, 
Nokelainen et al. 2012, Speed et al. 2012, Kikuchi 
and Pfennig 2013, Aubier et al. 2017b, Akcali and 
Pfennig 2017, Akcali et al. 2018, Bosque et al. 2018, 
Hegedus et al. 2018, Rönkä et al. 2018, Briolat et al. 
2019, Anderson and de Jager 2020, de Solan et al. 
2020, Moore et al. 2020, Burdfield-Steel and Kemp 
2021, Curlis et al. 2021, Kikuchi et al. 2021, Kunte 
et al. 2021, Liu et al. 2022). Long-standing enigmas 
include cases where models and mimics do not closely 
resemble each other (e.g. Huheey 1988, Dittrich et al. 
1993, Lindstrom et al. 1997, Sherratt 2002, Ruxton 
et al. 2004, Gilbert 2005, Speed and Ruxton 2010, 
Penney et al. 2012, Kikuchi et al. 2016, Pfennig and 
Kikuchi 2012, Kikuchi and Pfennig 2013, Iserbyt et 

al. 2011, Dalziell and Welbergen 2016, Rönkä et al. 
2018, de Solan et al. 2020, Katoh et al. 2020), including 
cases where ‘imperfect mimics appear more numerous 
than more perfect mimics’ (Edmunds, 2000). Some of 
the observed variation in mimetic systems is argued 
to be the result of the model escaping parasitism by 
evolving away from the mimic (e.g. Sheppard et al. 
1985, Huheey 1984, 1988, Joron and Mallet 1998, 
Ruxton et al. 2004, Pfennig and Kikuchi 2012, Aubier 
et al. 2017b, Akcali et al. 2018). In addition, some have 
argued in the context of generalized feedback models 
that mimetic systems exhibit accelerated rates of 
evolution (Dunn 1954, Van Valen 1973, Dawkins and 
Krebs 1979, Darlington 1980, DeAngelis et al. 1986, 
Turner 1995, Gavrilets and Hastings 1998, Joron and 
Mallet 1998, Seaborg 1999, 2021, Thompson 2013, 
Kizirian and Donnelly 2017, Anderson and de Jager 
2020, Cazzolla Gatti et al. 2020, Kikuchi et al. 2021). 
Here, we more intensively consider how feedback may 
produce the observed unexpected variation in mimetic 
systems such as polymorphism, imperfect mimicry 
and accelerated evolution.

Sena and Ruane (2022) argued for increased rigor 
in mimicry studies, including improved diligence 
regarding consideration of alternative hypotheses 
(easy) and increased effort to obtain empirical data 
(challenging). We add that greater rigor could also 
be sought in the theoretical models used to explain 
mimesis. We present a more integrative and explicit 
feedback model for Batesian mimetic systems, 
bringing additional ecological dynamics into what has 
traditionally been treated as primarily an evolutionary 
topic (Johnson and Stinchcombe 2007), with an eye 
towards explaining long-standing questions related to 
unexpected variation and other aspects of mimicry. In 
addition to salient processes (e.g. mimicry between toxic 
and non-toxic prey species; predation on models), we 
consider indirect benefits (e.g. Patten 1982, Bondavalli 
and Ulanowicz 1999, Fath 2007) and processes not 
generally addressed in studies of mimesis such as 
nutrient transfer, ‘to avoid missing important non-
trivial dynamics of the coupled system’ (Henderson 
and Loreau 2018). We also submit that additional 
rigor may be realized by integration of thought across 
scientific disciplines, and hence we craft our model in 
a broad theoretical context including systems ecology 
and thermodynamics, and we employ their respective 
lexicons where appropriate (e.g. Ulanowicz 1997, Fath 
and Patten 1998, Toussaint and Schneider 1998, Pross 
and Khodorkovsky 2004, Fath 2007, Bailer-Jones 2009, 
Ulanowicz 2009b, Ho 2013, Pascal and Pross 2015, 
Cazzolla Gatti et al. 2020, Seaborg 2021; see Glossary). 
We will pay particular attention to published data for 
mimetic snakes because unique complexity of those 
systems is relevant to the theoretical model.



Feedback dynamics in Batesian trophic systems

We argue that mimicry is best understood through 
integration of ecological and evolutionary processes 
(e.g. Johnson and Stinchcombe 2007, Basu et al. 
2023), which may be mutualistic rather than agonistic 
overall, even if some relationships are ostensibly one-
sided (e.g. Boucher et al. 1982, Fath and Patton 1998, 
Fath 2007, Ulanowicz 2009b, Borrett et al. 2016, 
Aubier et al. 2017a, b, Fredrickson 2017, Henderson 
and Loreau 2018). Modelling Batesian mimicry in 
this context reveals a previously overlooked key 
link (e.g. Borrett et al. 2016) between predators 
and mimics that drives the evolution of mimesis, 
specifically, ‘selection for predation on the mimetic 
phenotype results when predators consume mimics’, 
which drives continued predation on the model and 
perpetuates mimicry (Fig. 1). That critical link in the 
feedback loop preserves variation in the predator, 
which allows a mimetic trophic system to evolve and 

persist, even if high toxicity evolves in the model. 
In addition, a dualistic (Ulanowicz 2009a, 2009b; 
Glossary) dynamic between predator and mimic is 
evident under the proposed feedback model: predation 
on the Batesian mimic (i) preserves variation (in 
the predator and the trophic system as a whole) by 
rewarding predation on the mimetic phenotype and, 
at the same time, (ii) culls variation (in the mimic and 
the trophic system as a whole) by selecting against 
imprecise mimics, which may further optimize 
mimesis. Rather than expecting mimicry to evolve 
towards a perfect endpoint, we expect ecological 
and evolutionary dynamics to perpetually optimize 
multiple variables through overlapping feedback 
circuits, resulting in both preservation and culling of 
variation (and other processes) in mimetic systems 
(e.g. Wignall and Soley 2021; Fig. 2). Hence, ‘imperfect 
mimicry’ is not an anomaly but an expectation of 
mimetic system dynamics.

Figure 1.  Feedback in a hypothetical Batesian mimetic trophic system. The previously overlooked link (shaded) between 
the non-toxic mimic and the predator completes the feedback circuit, specifically, selection for predation on the mimetic 
phenotype, which drives subsequent processes that drive mimicry.



Feedback circuits may engender autocatalysis, 
a type of positive feedback that results in self-
sustaining accelerated rates of change (e.g. Ostwald 
1890, Edelstein 1971, Eigen, 1971, Kauffman 1971, 
Ulanowicz 2004, 2009b, Plasson et al. 2011, Hordijk et 
al. 2012, Szostak et al. 2016, Seaborg 2021; Glossary), 
which may underlie hypothesized accelerated 
evolution for some mimetic trophic systems (e.g. 
Marshall 1908, Nicholson 1927, Dunn 1954, Van 
Valen 1973, Turner 1976, 1984, 1995, Dawkins and 
Krebs 1979, Darlington 1980, DeAngelis et al. 1986, 
Gavrilets and Hastings 1998, Joron and Mallet 1998, 
Guimaraes et al. 2011, Thompson 2013, Santos et al. 
2014, Arbuckle and Speed 2015, Rabosky et al. 2016, 
Anderson and de Jager 2020, Cazzolla Gatti et al. 
2020, Kikuchi et al. 2021, Cabral et al. 2022). Further, 
countercurrent feedback (or bidirectional feedback; 
Henderson and Loreau 2018) circuits, which tend to 
increase system efficiency (Hartigay and Kuhn 1951), 
are evident in the more inclusive model (Fig. 2). For 
example, benefit streams that increase efficiency 
(e.g. culling imprecise mimics) flow counter to more 
conspicuous pathways associated with mimesis (e.g. 
those directly involving predation and mimicry), such 
that a mimetic trophic system might be composed of 
multiple countercurrent feedback pathways, possibly 
inducing countercurrent autocatalysis (Fig. 2)  
which, may contribute to the accelerated evolution of 
those systems.

Feedback probably optimizes multiple processes 
in mimetic systems including underlying ecological 
processes overlooked in evolutionary studies of mimicry. 
Nutrient transfer, for example, is a core element of 
trophic systems that is key to understanding mimetic 
system dynamics. For example, when a predator 
consumes a mimic, it might simultaneously (i) optimize 
prey signalling in the mimic, (ii) select for predation on 

the mimetic phenotype and drive mimicry, (iii) apportion 
predation risks among model and mimic, as well as (iv) 
provide a nutritional benefit for the predator (Fig. 2). 
Nutrient transfer pathways should, therefore, increase 
complexity in mimetic systems where model and mimic 
prey on each other (Spawls and Branch 2020), such as 
those including coral snakes and mimics (e.g. Beebe 1946, 
Campbell et al. 2004), which, in addition to apportioning 
costs exacted by the non-ophidian predator that drives 
mimicry (Mueller 1878), would result in nutritional 
benefits for model, or mimic, or both. Nutrient transfer 
on a global scale (e.g. Swap et al. 1992) may also partially 
explain the high diversity (and other patterns including 
latitudinal and longitudinal gradients) of Neotropical 
mimetic systems (e.g. butterflies, snakes). Namely, 
airborne nutrients originating in the Sahara, captured 
by the Amazonian slopes of the Andes, and accumulated 
in the deltaic floodplain of the Amazon, might provision 
the increased diversity and complexity of ecosystems, 
including mimetic systems, in far eastern (Rabosky et 
al. 2016: fig. 1) and far western (Rabosky et al. 2016: fig. 
1; Doré et al. 2022) Amazonia.

Biological systems in general (e.g. cells, organisms, 
species, ecosystems, corporations, cities) tend to 
optimally evolve greater autonomy, agency, complexity, 
efficiency, emergence, robustness and stability as they 
mature (e.g. Rosnay 1979, Toussaint and Schneider 
1998, Ulanowicz 2009b, Cazzolla Gatti et al. 2020, 
Zisopoulos et al. 2022a, b). Mimicry emerges via an 
entanglement of myriad processes that should be 
considered when modelling them (e.g. Gavrilets and 
Hastings 1998, Henderson and Loreau 2018). For 
example, mimicry co-evolves with numerous other 
emergent phenomena including those not directly 
related to mimicry such as crypsis, competition, feeding 
efficiency, geographical variation, learning, sexual 
dimorphism, prey availability, physiological drive 

Figure 2.  A more inclusive feedback model of a hypothetical mimetic trophic system. This model includes two countercurrent 
feedback circuits that account for processes directly related to mimesis and some indirect benefits. Asterisks denote benefits 
in cases where model and/or mimic prey on each other (e.g., coral snakes and their mimics), which increases the number of 
links and further optimizes the stability of the system.



(e.g. hunger) and ontogeny (e.g. Sweet 1985, Yanosky 
and Chani 1988, Ruxton et al. 2004, Nokelainen et al. 
2012, Rönkä et al. 2018, Anzaldo et al. 2020, Pizzigalli 
et al. 2020, Yamazaki et al. 2020, Lev-Yadun 2021, 
Loeffler-Henry and Sherratt 2021, Rabosky et al. 2021, 
Cabral et al. 2022), at the same time that Mullerian 
and Batesian evolution jointly shape trophic systems 
(Bosque et al. 2022). Such a multiplication of links and 
layered complexity within a trophic system is expected 
to increase overall system efficiency and stability (Pross 
and Khodorkovsky 2004. Ho 2013. Pascal and Pross 
2015. Panyam et al. 2019. Cazzolla Gatti et al. 2020. 
Zisopoulos et al. 2020a, b), and may explain, for example, 
the high diversity of mimetic systems involving snakes 
in the New World and Africa (e.g. Campbell et al. 2004, 
Spawls and Branch 2020). Further, autocatalysis 
underlying the diversity and complexity of biological 
systems drives the evolution of yet more diversity and 
complexity; in short, complexity begets more complexity 
(Cazzolla Gatti et al. 2020). Such organized complexity, 
as ascendency, (e.g. Ulanowicz et al. 2006, Huang 
and Ulanowicz 2014), is potentially quantifiable (e.g. 
Ulanowicz 1997, Henderson and Loreau 2018, Panyam 
et al. 2019, Zisopoulos et al. 2020a) and may provide a 
metric for comparison of mimetic systems.

Highly evolved systems may become frangible if 
efficiency results in loss of adaptability in response to 
perturbation (Conrad 1983, Holling 1986, Ulanowicz 
2009b, Ulanowicz et al. 2009). In other words, biological 
systems tend to optimize robustness as they evolve 
but at the same time tend to be inherently brittle 
(Damiani et al. 2013, Zisopoulos et al. 2022a, b). For 
example, highly efficient aerobic respiration probably 
partly explains the high diversity and functional 
capacity of homeotherms; however, the fragility of that 
physiological strategy can be readily demonstrated 
in a few anaerobic minutes (e.g. blockage of cervical 
blood vessels and trachea in prey by canine teeth of 
predators). Perhaps cases wherein mimics do not occur 
sympatrically with a model, and similar situations that 
are challenging to explain (e.g. Gadow 1911, Huheey 
1976, Yamauchi 1993, Ruxton et al. 2004, Przeczek et 
al. 2008, Pfennig and Mullen 2010, Rabosky et al. 2016, 
Sena and Ruane 2022), represent mimetic systems in 
the process of collapse caused by the loss of order in 
an autocatalytic system (Kauffman 1986, Filisetti et 
al. 2011, Panyam et al. 2019), as is the ultimate fate 
of all biological systems (e.g. Toussaint and Schneider 
1998). Ascendency values might provide a means of 
evaluating the robustness of such systems (Panyam et 
al. 2019, Zisopoulos et al. 2022a).

CONCLUSIONS

Our consideration of mimicry in the context of feedback 
systems offers new insights. One of the pathways 

hypothesized herein regarding Batesian mimicry, i.e. 
predation drives the evolution of toxicity, which drives 
mimicry, which in turn drives selection for predation 
on the mimetic phenotype, constitutes a feedback cycle 
that, in part, preserves variation essential for the 
evolution and persistence of mimetic trophic systems 
(Figs 1, 2). The preservation of variation via feedback 
in mimetic systems may explain polymorphism within 
species, suboptimal mimicry and other deviations 
from frequency-dependent evolution. Feedback cycles 
may engender autocatalysis, which may explain 
disproportionate rates of evolution previously 
hypothesized for some mimetic systems.

Glossary

Ascendency: The capacity for a system to order 
itself, or organized complexity, including size. For 
example, eukaryote cells, with their extensive internal 
membranes and myriad coordinated metabolic 
processes, tend to exhibit greater ascendency than 
prokaryotic cells.

Autocatalysis: Self-accelerating positive feedback or 
the tendency for change to propagate in a feedback 
loop; evident at multiple levels of organization, 
sometimes as exponential growth; in citric acid cycle, 
some aquatic bladderwort (Utricularia) oligotrophic 
ecosystems, human population growth since the 
Industrial Revolution.

Autonomy: The independence and persistence of 
systems beyond that of their constituent subunits. For 
example, an individual organism remains a unitary 
independent system despite replacement of all its 
atoms and cells.

Countercurrent autocatalysis: Bidirectional 
feedback; opposing pathways of self-accelerating 
positive-feedback.

Duality: Opposing tendencies; for example, predation 
is both good (e.g. imperfect mimics culled) and bad (e.g. 
loss of matter, energy, information) for prey species in 
mimetic systems.

Emergence: Novel processes that manifest with 
new system organization; for example, development 
is change over time at the organism level, natural 
selection is change over time at the species level.
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