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Geographic variation in agonistic and territorial behavior by genetically distinct groups of 

the Eastern Red-backed Salamander (Plethodon cinereus) 

 

Abstract 

Geographic variation in agonistic and territorial behavior is largely unknown in terrestrial 

plethodontid salamanders, even though territoriality is widespread throughout this group. Using 

the color polymorphic Eastern Red-backed Salamander (Plethodon cinereus), I compared the 

aggressive and submissive behaviors of two genetically distinct groups in northern Ohio using 

male and female salamanders from six populations. As in other populations of P. cinereus 

studied, I expected to find agonistic and territorial behavior present in the populations in this 

study. Additionally, I predicted that the genetic group that is monomorphic for the striped morph 

would exhibit a higher degree of agonistic and territorial behavior compared to the polymorphic 

genetic group consisting of both striped and unstriped morphs as an adaptive consequence of the 

altered social dynamics in monomorphic populations. In laboratory trials, residents from the 

polymorphic group were significantly more aggressive than residents from the monomorphic 

group, in contrast to my hypothesis. This finding was corroborated by a strong residency effect 

in the polymorphic group, an effect that was not as apparent in the monomorphic group. In 

particular, female residents from the polymorphic group displayed a significantly greater degree 

of aggression compared to female residents from the monomorphic group and were much more 

aggressive and less submissive as residents than as intruders. My results imply that the 

individuals in the polymorphic group, particularly females, are more aggressive and territorial 

than the individuals in the monomorphic group, suggesting they are more likely to secure a 

territory and defend it against intruders. Studying geographic variation in behavior may be a 
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valuable avenue of continued research to determine if divergent selection is occurring among 

genetically distinct groups within this species.  

 

Introduction 

Population and quantitative geneticists have established that nonbehavioral traits, such as 

morphological, physiological, and molecular traits, vary geographically within a species, but 

behavioral traits have historically been recognized as unchanging (Foster 1999; Foster and 

Endler 1999). However, research across a wide variety of taxa has revealed that population 

differentiation exists for a multitude of behavioral traits including animal communication 

(Wilczynski and Ryan 1999), dietary preferences (Burghardt and Schwartz 1999), antipredator 

behavior (Brodie 1993; Coss 1999; Magurran 1999), and life history traits (reviewed in Morrison 

and Hero 2003). Moreover, divergence in phenotypes associated with behavior often has a 

genetic basis. For example, song repertoire size and recurrence interval of Marsh Wrens 

(Cistothorus palustris) differ in populations from San Francisco and New York when raised in 

controlled laboratory conditions and are therefore genetically based (Kroodsma and Canady 

1985). Additional examples include mating behavior in Drosophila paulistorum (Koref-

Santibanez 1972), feeding behavior in garter snakes (Thamnophis elegans; Arnold 1977), calling 

behavior in túngara frogs (Physalaemus pustulosus; Pröhl et al. 2006), rejection behavior of 

cuckoo eggs by Eurasian magpies (Pica pica; Soler et al. 1999), and agonistic behavior in coho 

salmon (Oncorhynchus kisutch; Rosenau and McPhail 1987). Genetically based geographic 

variation in behavior is therefore common and diverse and provides insight into adaptive 

behavioral divergence and the initial stages of speciation (Foster 1999).  
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Relatively little attention has been given to the study of geographic variation in agonistic 

and territorial behavior, despite this being a potential tool for determining how different 

communities are structured and how local ecological factors might shape behavior (Jaeger and 

Forester 1993). For example, Ensatina eschscholtzii, a salamander belonging to the family of 

lungless salamanders, Plethodontidae, is distributed as a ring species on the west coast of the 

United States. Wiltenmuth and Nishikawa (1998) found that agonistic and sensory behavior 

varies geographically among genetically distinct coastal and inland Ensatina populations, with a 

convergent reduction in aggression among inland populations attributed to either reduced 

territoriality and competition or similar environmental conditions encountered by the inland 

populations (Wiltenmuth and Nishikawa 1998). Plethodontid salamanders can serve as model 

organisms with which to examine this type of geographic variation, as they are an ecologically 

diverse group in which territoriality is common and have been a focus of study for several 

decades (reviewed in Mathis et al. 1995). In particular, the Eastern Red-backed Salamander, 

Plethodon cinereus, represents an ideal model with which to test hypotheses regarding 

geographic variation in agonistic and territorial behavior. This species is geographically 

widespread and experiences a variety of environmental conditions, is known to have limited 

dispersal and gene flow (Cabe et al. 2007) and exhibits a complexity of behavioral patterns that 

have been extensively studied for the past five decades (reviewed in Jaeger et al. 2016).  

Plethodon cinereus is a small, completely terrestrial, direct-developing plethodontid. 

Because activity is typically constrained to moist environments (Feder and Londos 1984), 

individuals are often found under cover objects (e.g., rocks, logs) on the forest floor, as these 

provide preferable environmental conditions and greater access to prey, courtship areas, and 

nesting sites (Gergits and Jaeger 1990). It is the most abundant salamander species throughout 
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many parts of its range (Anthony and Pfingsten 2013), which extends across northeastern North 

America southward to western and northeastern North Carolina, northwestward to western 

Minnesota, and as far north as parts of southern Canada (Petranka 1998). There are eight known 

color morphs, with the two most commonly occurring morphs being the red-backed, or striped 

morph, and the lead-backed, or unstriped morph (Moore and Ouellet 2014). The striped morph is 

characterized by a red dorsal stripe running from the head to the base of the tail and the unstriped 

morph, in comparison, appears uniformly dark (Anthony and Pfingsten 2013). There is a genetic 

basis for the observed phenotypic variation of the striped and unstriped morphs, and it is likely 

that multiple gene pairs control color expression (Highton 1975). Relative proportions of striped 

and unstriped individuals in a given population can vary greatly, to the extent that monomorphic 

striped populations appear to be continuous throughout the range of P. cinereus, whereas 

populations with only unstriped morphs are uncommon (Pfingsten and Walker 1978; Petranka 

1998). In northern Ohio, populations are typically dimorphic, but sometimes only one morph 

might be present (Pfingsten and Walker 1978). Additionally, some populations exhibit clinal 

variation in morph frequency including localities in northern Ohio (Pfingsten and Walker 1978; 

Hantak et al. 2019), Long Island (Fisher-Reid et al. 2013, Fisher-Reid and Wiens 2015), and the 

Delmarva Peninsula (Highton 1977). According to McLean and Stuart-Fox (2014), if gene flow 

is low or absent, populations that differ in morph composition or along a morph-frequency cline 

might be subject to speciation with natural selection favoring a particular morph at either end of 

the selective cline. In northern Ohio, three genetically distinct groups have been identified 

(Hantak et al. 2019) that correlate with changes in morph frequency. From west to east: the 

Western Cluster consists of two sampled localities and is made up of mostly unstriped 

individuals (≥ 90% unstriped); the Central Cluster is made up of mostly dimorphic populations, 
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with a noticeable transition from mostly unstriped morphs including one completely unstriped 

population, to populations that contain a high proportion of striped morphs including one 

completely striped population; and the Eastern Cluster, which is separated from the Central 

Cluster by the Cuyahoga River, is fixed for the striped morph (Hantak et al. 2019). The steep 

genetic differentiation found in populations of P. cinereus in northern Ohio can potentially lead 

to pronounced behavioral differences related to agonistic and territorial behavior that allow us to 

examine hypotheses regarding geographic variation in behavior with a genetic component. 

Numerous studies have been carried out that provide evidence for territoriality in P. cinereus in 

various portions of its range, although most have only looked at individuals from one local 

population (reviewed in Jaeger et al. 2016), making it difficult to extrapolate the results across 

the species’ range (Selby et al. 1996).  

Direct-developing, terrestrial salamanders like P. cinereus are constrained by temporal 

fluctuations in surface moisture, thereby dictating foraging activity and reproductive tactics 

(Jaeger 1981a). As the leaf litter dries, prey availability decreases, and competition for food 

becomes more intense (Jaeger 1972). Females typically produce smaller clutch sizes of larger 

eggs with more investment per offspring (Mathis et al. 1995). Furthermore, competition for 

suitably moist substrates (beneath cover objects) is high because they are considered a valuable 

and defendable resource for P. cinereus (Mathis 1990a). A territory can be defined as an 

exclusive area that is defended against intruders (Noble 1939; Tinbergen 1957; Brown and 

Orians 1970). To defend and maintain a territory, particularly one in an environment with limited 

resources (i.e., food and high-quality cover objects), an individual must experience a net fitness 

benefit. Consequently, a balance must be achieved between the benefits of mate and food 

acquisition, protection from predators, etc., and the costs of time lost and missed opportunities, 
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energy expenditure, and risk of injury, known as economic defendability (Brown 1964). Jaeger 

and Gergits (1979) established four essential characteristics to describe a territorial species: site 

fidelity, advertisement, aggressive defense, and expulsion of intruders. Adults of P. cinereus 

exhibit each of these characteristics. They exhibit site attachment across seasons (Gergits and 

Jaeger 1990) and both males and females chemically advertise their presence with pheromones 

deposited on substrates in or on fecal pellets (Jaeger et al. 1986; Horne and Jaeger 1988; Mathis 

1990b). Both actively defend sites during the courting and non-courting seasons through 

agonistic behavior, which involves threat postures, as well as aggressive and submissive 

displays, and may occasionally lead to biting (Jaeger 1984; Horne 1988; Mathis 1989, 1990a). 

Lastly, territorial residents have been shown to expel intruders from defended areas beneath 

cover, the fourth and final requirement of territoriality (Jaeger et al. 1982; Mathis 1990a). 

Conspecifics that are defeated and not able to secure and defend a territory may adopt a 

nonterritorial floater tactic (Brown 1969; Mathis 1991) that may result in lower fitness due to an 

inability to acquire mates, resources, or both (Anthony et al. 1997). At one locality in northern 

Ohio, it appears that striped morphs are more capable of territory ownership, as Reiter et al. 

(2014) found that striped males were significantly more aggressive and occupied more cover 

objects for longer time periods as territorial residents compared to unstriped males.  

As outlined above, territorial behavior in P. cinereus is well-established and has been 

examined in many parts of its geographic range, particularly in the southern extent of its range in 

Virginia (reviewed in Jaeger et al. 2016). In the north, some studies have suggested that P. 

cinereus may not be as territorial. Quinn and Graves (1999) found that a population in northern 

Michigan displayed an aggregated spatial distribution rather than a uniform one. Uniform 

distributions have been observed in Virginia (Jaeger 1979; Mathis 1989, 1991) and are indicative 
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of a territorial spatial distribution. Additionally, in southern Ontario, Canada individuals exhibit 

a random spatial distribution and low levels of aggression (Rollinson and Hackett 2015). 

Reduced aggression and territorial behavior in these areas can potentially be attributed to 

resource distribution and availability, as well as a continually wetter habitat. In contrast, 

populations in Ohio appear to exhibit levels of aggression comparable with those in Virginia and 

New York (Anthony and Pfingsten 2013). Clearly, there is variation in agonistic and territorial 

behavior across the range of P. cinereus and this phenotypic variation quite likely reflects 

genetic variation due to local adaptation. However, only one study to date has investigated 

genetically based geographic variation in territorial behavior (Wise and Jaeger 2016). In the 

current study, I experimentally compared the agonistic and territorial behavior of striped 

individuals from two genetic clusters in northern Ohio to examine geographic variation of 

behavior in genetically distinct groups.  

I performed resident-intruder tests in the laboratory on equal numbers of male and female 

P. cinereus within a single genetic cluster to compare aggressive and submissive behaviors in 

intrasexual contests between the two clusters. My null hypothesis was that the clusters would 

display a similar degree of agonistic and territorial behavior, as has been reported in Jordan’s 

Salamander (Plethodon jordani; Selby et al. 1996). Alternatively, I predicted that individuals in 

the monomorphic cluster would show a higher degree of agonistic behavior compared to 

individuals in the polymorphic cluster. Alleles that increase the fitness of striped morphs in 

polymorphic populations may be free to spread in monomorphic populations due to the absence 

of the unstriped morph, a process known as genomic character release (West-Eberhard 1986). 

This process may result in the evolution of increased agonistic behavior in the polymorphic 

cluster, following release from the evolutionary constraints of having to accommodate multiple 
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phenotypes in polymorphic populations (West-Eberhard 1986). Furthermore, rapid phenotypic 

evolution associated with morph loss can lead to morphic speciation, such as in side-blotched 

lizards (Uta stansburiana; Corl et al. 2010). Lastly, I predicted that residents of both clusters 

should exhibit more aggressive and fewer submissive behaviors compared to intruders (i.e., 

residency effect) due to prior resident advantage, as well as an asymmetry in payoff for the 

resident (Maynard Smith and Parker 1976; Krebs 1982; Figler and Einhorn 1983). Residents 

should have more to gain by winning a contest because they have invested more time and energy 

into holding the territory; therefore, they can afford to suffer a greater fitness loss in a fight than 

an intruder (Parker 1974; Maynard Smith and Parker 1976). The difference in resident and 

intruder behavior may be more pronounced in the Eastern Cluster if this group exhibits a more 

aggressive phenotype.  

 

Methods 

Salamander collection  

Salamanders were collected in the spring of 2019 from three populations in the Central Cluster 

and three in the Eastern Cluster. Central Cluster localities included Black River (41.41602, -

82.10184), Rocky River (41.42073, -81.8592), and West Creek (41.39006, -81.6912) 

reservations. Eastern Cluster localities consisted of Tinkers Creek (41.37557, -81.5736), Doan 

Brook (41.49361, -81.593533), and South Chagrin (41.42324, -81.4207) reservation. Among 

populations in northern Ohio, Fst values derived from microsatellite markers range from 0.007 in 

continuous forest to 0.149 in urban fragmented habitat (Cameron et al. 2019), as well as a 

maximum Fst of 0.17 across a 20 km distance (Waldron et al. 2019). Therefore, sites were 

selected because each had a considerably high Fst (0.29–0.41) between it and a population in the 
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adjacent cluster, thereby allowing us to maximize genetic differentiation among sampled 

localities. Additionally, populations in the Central Cluster were selected only if the proportion of 

striped morphs was no greater than 0.8 in order to minimize differences in color morph 

frequency among polymorphic populations. The proportion of striped morphs in Central Cluster 

populations ranged from 0.65–0.8.  

Ten adults of each sex were collected at each of the three sampling localities within the 

two genetic clusters for a combined total of 120 individuals. The minimum size for sexually 

mature adult male P. cinereus in Ohio is approximately 32 mm SVL and for females 34 mm 

SVL (Anthony and Pfingsten 2013); as such, only males greater than 32 mm and females greater 

than 34 mm were collected. To determine the sex of each salamander, snout shape was inspected 

following Anthony et al. (2008); males have a broad, square snout that is enlarged with visible 

cirri during the reproductive season (spring and fall), whereas snouts of females appear rounded 

relative to males. Moreover, if females are gravid, eggs can be seen in the abdominal area. Due 

to the time of collection, the majority of females used were gravid (visible yolked eggs). One 

nongravid female was used in this experiment; however, Horne (1988) found that gravid and 

nongravid females in Virginia displayed similar levels of aggressive behavior. Salamanders were 

transported in individually labeled Falcon 50 mL conical centrifuge tubes to John Carroll 

University, University Heights, OH, USA.  

 

Measuring territorial behavior in the laboratory 

In the laboratory, environmental conditions were maintained at 15 ± 2 °C under a natural 

photoperiod. All salamanders were housed in separate 473 mL Pyrex glass containers with damp 

leaf litter and fed approximately 25-30 Drosophila melanogaster per week. To begin 
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experimental set-up, salamanders were placed on circular 15 x 1.5 cm polystyrene petri dishes 

(i.e., territorial chambers) lined with damp (spring water) filter paper substrate. Animals were 

held in territorial chambers for five to seven days, depending on the testing day, which has been 

shown to be sufficient time for P. cinereus to establish territorial ownership in a laboratory 

setting (Nunes and Jaeger 1989). Establishing ownership may entail the production and use of 

fecal pellets deposited on the substrate to mark territories (Jaeger et al. 1986; Horne and Jaeger 

1988; Mathis et al. 2000). Uneaten flies were removed from the chamber approximately 24 h 

prior to testing.  

Each individual was tested three times (once as a resident, once as an intruder, and once 

as a resident with a control). A resident was paired with a same sex intruder from its own 

population and with a surrogate control (rolled-and-moistened paper towel similar in size to the 

resident; Jaeger et al. 1982; Anthony et al. 1997). To reduce the effect of size asymmetry on 

competition, pairs were size-matched (≤ 2 mm; Mathis et al. 1998) with a random individual 

from a different population in the same genetic cluster. If possible, in a given pairing, the larger 

individual was selected to be the intruder to eliminate any possibility of a size advantage to the 

resident who already has the advantage of prior territorial residency (Wise and Jaeger 2016). A 

range of 9–19 trials on each of 18 testing days was conducted from 23 May to 16 July 2019, with 

40 trials for each of the three populations from the two genetic clusters (240 trials in total). The 

order of residency status was dispersed evenly among testing days (Hurlbert 1984) and no 

individual was used more than once in each week. Additionally, all trials were carried out blind 

by assigning each individual a random alphanumeric code. Trials were run between the hours of 

0900 and 1800 over the course of the testing period.  
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To begin testing, both salamanders were marked with a small spot of DayGlo ECO 

pigment (Blaze Orange or Signal Green; Day-Glo Color Corp) on the dorsal surface, 

immediately posterior to the pectoral girdle (Lynn et al. 2019). The pigment color was alternated 

for each trial, such that a resident in one trial was marked with green pigment and a resident in 

the following trial was marked with orange pigment. The resident was then lifted and placed 

under an opaque habituation dish (6 x 1.5 cm) and the assigned intruder was subsequently 

removed from its home chamber and placed into the resident’s chamber on the opposite end of 

the chamber under a second habituation dish for a five-minute acclimation period. After the 

acclimation dishes were removed, behavioral interactions were documented for 900s using 

TrueBasic Event-PC 3.0 data collection software (TrueBasic, Inc.) simultaneously on two laptop 

computers, one for the resident salamander and one for the intruder.  

Several previously documented agonistic behaviors (Jaeger 1984) were recorded 

including the number of times a behavior was performed and the length for which it occurred. 

Aggressive behaviors include All Trunk Raised (ATR), Move Toward (MT), Look Toward (LT), 

and Biting (BITE), and are described as follows: ATR – a salamander lifts its trunk completely 

off of the substrate; MT – an individual moves directly toward the opponent in a direction that 

may result in eventual contact (Mathis et al. 2000); LT – a salamander turns its head in the 

direction of the opponent; BITE – a salamander grasps the opponent with its open mouth. 

Although ATR can be considered a gradational series of postures (Jaeger and Schwarz 1991) that 

signal increasing levels of threat, these levels were not distinguished in this study. Move Away 

(MA), Look Away (LA), and Edging (EDGE) are considered submissive behaviors and can be 

defined as: MA – a salamander moves away from the opponent to increase its distance; LA – a 

salamander turns its head away from the opponent to avoid visual contact; and EDGE – a 
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salamander roams the periphery of the territorial chamber and/or may press its snout or a limb to 

walls or the crevice between the lid and walls of the chamber (Wise and Jaeger 2016). EDGE is 

recognized as a withdrawal behavior (Jaeger et al. 2016), as well as an escape or hiding behavior 

(Lynn et al. 2019). Timing of behaviors ended when the focal animal clearly terminated the 

given behavior, or the animal exhibited a subsequent behavior, such as an individual moving 

toward its opponent after looking toward (Reiter et al. 2014). The time spent in the aggressive 

behaviors MT and LT and the time spent in the submissive behaviors MA and LA were 

combined to calculate an Aggression Index (AI), where AI = (MT + LT) – (MA + LA), an 

equation used in previous studies looking at aggression in salamanders (Mathis et al. 2000; 

Reiter et al. 2014). 

 

Statistical Analysis 

To determine if salamanders from the Central and Eastern Clusters differed in the average time 

spent in aggressive and submissive behaviors, statistical analyses were run in R Studio (R Core 

Team 2016). Based on the distribution of the data, a nonparametric permutation approach was 

used because it did not require the assumptions of normality, heterogeneity, and equal variance. 

Data were first converted into Euclidean dissimilarity matrices using the vegdist function and 

then PERMANOVAs were run using the adonis function in the vegan package, specifically 

comparing individuals tested as residents. When looking at how individuals within a single 

cluster differed in behavior when territorial ownership status differed, the strata option was 

included in the PERMANOVA to account for each individual being used twice (once as a 

resident, once as an intruder). Sixteen individuals were removed from analysis comparing 

resident behavior with a control because behaviors were recorded inconsistently. The 
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Bonferroni-Holm correction for multiple comparisons was used to analyze the time spent in the 

aggressive behaviors ATR, MT, and LT (𝛼 = 0.01) and the submissive behaviors MA and LA (𝛼 

= 0.025; Holm 1979). BITE did not occur frequently enough to be included in statistical analysis. 

Similarly, EDGE did not differ statistically between the two clusters, or between residents and 

intruders within a cluster, and so was excluded from analysis. Interpopulation differences in the 

level of aggressive and submissive behaviors were not statistically distinguishable, except for 

low aggression by females from one population in the Central Cluster; however, overall 

populations did not appear to be operating independently of one another (Tables 1, 2); therefore, 

sampling localities within each cluster were pooled for statistical analysis. However, females 

from one locality in the Central Cluster displayed a significantly lower aggression index (AI) 

compared to females in the other two localities when paired with a live intruder (F2,21 = 5.32, P = 

0.02; Table 1).  

 

Results 

Salamanders paired with a conspecific intruder had a higher aggression index (AI) than when 

they were with a surrogate control in both the Central and Eastern Clusters (Table 3). 

Specifically, Central Cluster males (F1,44 = 4.59, P = 0.02) and Eastern Cluster females (F1,42 = 

6.33, P = 0.009) were significantly more aggressive toward conspecific intruders than they were 

toward a control, whereas Central Cluster females (F1,46 = 0.52, P = 0.50) and Eastern Cluster 

males (F1,46 = 0.37, P = 0.42) were not (Table 3).  

I compared resident behavior between the clusters and found that Central Cluster 

residents had a significantly higher AI than Eastern Cluster residents (F1,120 = 9.54, P = 0.002; 

Table 4; Figure 1). In particular, residents in the Central Cluster spent significantly more time on 
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average in the aggressive behavior MT compared to residents in the Eastern Cluster (F1,120 = 

9.99, P-adj = 0.006; Table 5; Figure 1) and also tended to spend more time in the aggressive 

behavior LT (F1,120 = 3.96, P-adj = 0.12; Table 5; Figure 3), although there was not much 

difference in the mean time spent in the submissive behaviors MA (F1,120 = 0.025, P-adj = 1.00; 

Table 6; Figure 1) or LA (F1,120 = 0.82, P-adj = 0.76; Table 6; Figure 1).  

Furthermore, I found a strong residency effect in the Central Cluster, but not the Eastern 

Cluster, when comparing resident to intruder behavior. That is, Central Cluster residents had a 

significantly higher mean AI (F1,120 = 10.93, P = 0.002; Table 7) than Central Cluster intruders, 

whereas the difference in mean AI between Eastern Cluster residents and intruders was minimal 

(F1,114 = 1.19, P = 0.23; Table 7). Both males (F1,60 = 1.49, P = 0.16; Table 7; Figure 2) and 

females (F1,58 = 13.96, P = 0.002; Table 7; Figure 2) in the Central Cluster exhibited a higher 

mean AI as residents than as intruders. On average, Central Cluster residents of both sexes spent 

more time in the aggressive behaviors MT and LT (Table 8) and less time in the submissive 

behaviors MA and LA (Table 9). In the Eastern Cluster, male residents and intruders tended to 

exhibit a larger mean difference in AI  (F1,54 = 2.63, P = 0.09; Table 7; Figure 3), whereas the 

difference in mean AI for female residents and intruders was very small (F1,58 = 0.07, P = 0.73; 

Table 7; Figure 3). Eastern Cluster male and female residents spent either more time, less time, 

or about equal time in the aggressive (Table 10; Figure 3) and submissive behaviors making up 

the AI compared to intruders (Table 11; Figure 3). Therefore, no clear pattern of a residency 

effect can be confidently attributed to the Eastern Cluster. The time spent in the aggressive 

behavior ATR was not consistent across either sex, territorial ownership status, or cluster, and 

the intensity of the behavior was typically not a reliable indicator of aggression. However, 
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Eastern Cluster female intruders did display a noticeably higher mean time spent in ATR than 

residents (F1,58 = 3.00, P-adj = 0.18; Table 10; Figure 3).  

The higher aggression in Central Cluster residents was exhibited in both sexes. Central 

Cluster males showed a higher mean AI than Eastern Cluster males that tended toward 

significance (F1,59 = 3.11, P = 0.09; Table 9; Figure 1). However, female resident behavior 

differed dramatically between the Central and Eastern Clusters. Central Cluster females had a 

significantly higher AI than Eastern Cluster females (F1,59 = 6.76, P = 0.015; Table 9; Figure 1); 

therefore, females contributed a much greater degree on average to the higher aggression of 

residents observed in the Central Cluster, which was particularly influenced by the aggressive 

behaviors MT (F1,59 = 13.51, P-adj = 0.003; Table 10; Figure 1) and LT (F1,59 = 6.02, P-adj = 

0.03; Table 10; Figure 1). Additionally, Central Cluster females spent a significantly greater 

amount of time in ATR as residents compared to Eastern Cluster females (F1,59 = 10.06, P-adj = 

0.003; Table 10; Figure 1). The strong residency effect in the Central Cluster can primarily be 

attributed to the substantial difference in mean AI of female residents and intruders (F1,58 = 

13.96, P = 0.002; Table 7; Figure 2). Specifically, Central Cluster female residents spent 

significantly more time in MT (F1,58 = 6.07, P-adj = 0.02; Table 8; Figure 2) and significantly 

less time in LA compared to female intruders (F1,58 = 2.69, P-adj = 0.04; Table 9; Figure 2).  

 

Discussion 

Two lines of evidence support the notion that geographic variation in territorial behavior exists in 

northern Ohio, most likely driven by the strong genetic differentiation between the two groups. 

The first is that the Central Cluster is more aggressive than the Eastern Cluster, indicated by a 

higher AI. The second is that while residents of both genetic clusters showed a higher AI as 
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residents than as intruders, the Central Cluster exhibited a much larger difference than the 

Eastern Cluster, demonstrating a clear residency effect and suggesting they are more likely to 

secure a territory and defend it against intruders.  

Plethodon cinereus is one of the most well-studied salamanders and information on 

intraspecific territoriality in both males and females is particularly well-known (reviewed in 

Jaeger et al. 2016). Additionally, variation in territorial behavior would be expected throughout 

this species’ widespread geographic range. Following postglacial expansion, populations would 

have become established and separated long enough for phenotypic variation to potentially 

evolve (Radomski et al. 2020). Biotic differences across the range, such as differences in prey 

availability, moisture on the forest floor, and presence of endo- or ectoparasites, competitors, or 

predators, could have caused local adaptations that may or may not have necessitated some 

populations to be territorial. Variation in the degree of territoriality and aggression is known 

across the range of P. cinereus, but the bulk of studies focusing on territorial behavior have been 

carried out in Virginia, where individuals exhibit very high levels of aggression and territoriality 

(Jaeger 1981b, Jaeger et al. 1982, 1995; Horne 1988; reviewed in Mathis et al. 1995). Individuals 

from a population in New York also engage in agonistic behaviors on a level similar to those 

from Virginia (Jaeger 1984). In contrast, individuals apparently display very little aggression in 

Michigan, although this inference is based on aggregative space use, suggesting reduced 

territoriality (Quinn and Graves 1999). Anthony and Pfingsten (2013) summarize seven studies 

in New York, Virginia, and Ohio that appear to exhibit similar variation in the average time 

spent (per 900 s trial) in the aggressive behavior ATR by territorial residents. In Ohio, Gall et al. 

(2003) reported 128 s in ATR by a population located in the Eastern Cluster. By contrast, 

Hickerson et al. (2004) reported 344 s in ATR by a population in the Central Cluster. 
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Additionally, Reiter et al. (2014) reported an average of 373 s in ATR by another population in 

the Central Cluster. In the current study, the average time spent in ATR was 171 s by residents in 

the Central Cluster and 139 s by the Eastern Cluster (Table 5), which follows the trend of higher 

aggression in the Central Cluster; however, my results relatively low levels of aggressive 

behavior in terms of time spent in ATR. Furthermore, the mean AI that I found for Central 

Cluster residents (AI = 90) is also lower than that reported by Reiter et al. (2014) for residents at 

her site in the Central Cluster (AI = 160). Perhaps this large difference may be attributed to 

genetic variation among populations in the Central Cluster, as well as the genetic admixture 

(Hantak et al. 2019) in the population used by Reiter et al. (2014), which may explain the 

observed variation in agonistic behavior, while highlighting how geographic variation in 

intraspecific territorial behavior can occur on a relatively small spatial scale. Contrary to the 

above comparison, Wise and Jaeger (2016) found that genetically distinct groups of P. cinereus 

occurring over a small geographic area in Virginia did not differ in the time spent in ATR, but 

did in the submissive/escape behavior EDGE, suggesting that genetic differences may influence 

territorial behavior, at least for submissive behavior.  

Geographic variation in territorial behavior could also result from differences in dispersal 

behavior and some studies suggest that the two traits may be linked. If an individual is less 

dispersive, then one might assume that individual would be more territorial, and thus require the 

ability to defend its territory through some form of agonistic behavior. For example, male water 

skinks (Euplamprus heatwolei) exhibit an inverse relationship between exploratory behavior and 

territoriality. In a laboratory setting, less territorial floaters spent more time moving and less time 

in a novel enclosure compared to territorial individuals (Stapley and Keogh 2004). Unstriped 

morphs of P. cinereus are also characterized by a non-territorial floater tactic (Anthony et al. 
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2008; Reiter et al. 2014). Additionally, they frequently occupy the edges of the species’ range 

(Cosentino et al. 2017), suggesting a greater propensity to disperse. Monomorphic striped 

individuals in the Eastern Cluster may demonstrate a similar relationship between aggression and 

dispersal as unstriped morphs in the Central Cluster. According to a recent phylogeographic 

analysis by Radomski et al. (2020), the Eastern Cluster has dispersed further from its ancestral 

range since the last glacial maximum compared to the Central Cluster. The Eastern Cluster 

(called the Pennsylvania Clade in Radomski et al. 2020) expanded into New York, Ohio, 

Pennsylvania, eastern Maryland, and West Virginia, whereas the Central Cluster (called the Ohio 

Clade in Radomski et al. 2020) is restricted to Ohio and one geographically isolated population 

in Kentucky and in West Virginia.  

Another possibility for the observed differences in aggressive behavior between the two 

clusters may be due in part to the presence or absence of interspecific competitors. The 

Allegheny Mountain Dusky Salamander (Desmognathus ochrophaeus), for example, is a 

potential competitor of small Plethodon. The two species often overlap in microhabitat 

distribution and individuals can occasionally be found under the same cover object (Smith and 

Pough 1994). However, they may differ in agonistic abilities, such that D. ochrophaeus has 

muscular jaws and a larger mouth gape compared to P. cinereus. Using resident-intruder tests, 

Smith and Pough (1994) found that D. ochrophaeus frequently displaced P. cinereus and 

demonstrated aggressive behaviors such as biting, leaving bite marks on several P. cinereus 

individuals. The geographic range of D. ochrophaeus coincides with the sampled populations of 

P. cinereus in the Eastern Cluster but does not with those in the Central Cluster (Orr and Davic 

2013). As such, interspecific interference competition between P. cinereus in the Eastern Cluster 

and D. ochrophaeus could result in variation in aggressive behavior via agonistic character 
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displacement (Grether et al. 2009). A similar example exists in P. glutinosus and P. jordani, two 

closely related, ecologically similar plethodontid salamanders. Nishikawa (1985) compared the 

aggressive behavior of these two species at two localities in Virginia and found evidence of 

increased aggression via natural selection in P. glutinosus at the locality where interspecific 

competition was more intense (i.e., alpha selection; Gill 1972, 1974). In the Eastern Cluster, 

aggressive dominance/displacement of P. cinereus by D. ochrophaeus could lead to the adoption 

of an alternative territorial tactic in which P. cinereus are selected to become less aggressive, a 

tactic perhaps not used by P. cinereus in the Central Cluster where they have not been forced to 

interact with an aggressively dominant interspecific competitor.  

Variation in territorial behavior may also differ geographically due to environmental 

factors including parasites or prey availability. Maksimowich and Mathis (2000) reported that in 

P. angusticlavius, male salamanders with high parasite loads were less aggressive overall than 

males with low parasite loads. In Michigan, where P. cinereus is reportedly less aggressive 

(Quinn and Graves 1999), three species of endoparasites were found (Muzzall 1990). In Ohio, no 

parasites were recovered (Odlaug 1954); although more recently, two species of helminth were 

found in two populations in Pennsylvania, as well as in one Virginia population (Bursey and 

Schibli 1995). Future research is needed to further surmise how parasitism may be at play among 

populations and genetic clusters in northern Ohio. Additionally, an inverse relationship may exist 

between prey abundance and territorial investment, as has been documented in some birds 

(Stenger 1958) and lizards (Simon 1975). Maerz and Madison (2000) looked at two populations 

of P. cinereus in New York that differed in prey availability and found that individuals from the 

population with a high abundance of food were less territorial. If the availability of prey is lower 

in the Central Cluster, individuals may invest in a more aggressive territorial strategy. 
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Furthermore, the availability of nutrient-rich prey, such as termites (Gabor and Jaeger 1995), is 

an important indicator of territory quality that females are able to assess via male fecal pellets or 

pheromones deposited by the territorial owner (Walls et al. 1989). If fewer territories with high 

quality prey are available, males may need to engage in a greater number of agonistic encounters 

in order to secure and defend a territory that is attractive to females.  

Studies involving plethodontid salamanders have typically focused on the aggressive 

behavior of males (Hutchison 1959; Cupp 1980; Gabor and Jaeger 1995; Anthony et al. 1997; 

Townsend and Jaeger 1998; Reiter et al. 2014), although some have looked at aggression in 

females as well (Horne 1988; Staub 1993; Wiltenmuth 1996; Mathis et al. 2000; Lynn et al. 

2019). Mathis et al. (2000) found that female Ozark Zigzag Salamanders (P. angusticlavius) had 

a higher mean AI and bit intruders more often compared to males. In my study, females actually 

bit less often than males. The large difference in AI between Central and Eastern Cluster female 

residents can mainly be attributed to the greater amount of time spent in MT by Central Cluster 

females. Moving toward an opponent could result in eventual contact with the body of the other 

salamander and is considered an aggressive or preattack behavior (Jaeger et al. 2016). Combined 

with increases in MT behavior, female residents in the Central Cluster also spent significantly 

more time in ATR, a “look big” threat posture (Jaeger et al. 2016), compared to female residents 

in the Eastern Cluster. Clearly, Central Cluster females were more aggressive toward their same-

sex opponents. In addition to the strong genetic dissimilarity among Central and Eastern Cluster 

populations, morph composition may also be playing a role in driving the evolution of female 

aggressive behavior. The Central Cluster is largely made up of polymorphic populations with 

varying morph frequencies while the Eastern Cluster is monomorphic striped. In a polymorphic 

population in the Central Cluster, Anthony et al. (2008) and Acord et al. (2013) found that 
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positive assortative mating by color was occurring, most likely as an outcome of differential 

access by females to male territories. Striped males are considered more attractive to females 

than unstriped males, and females of both color morphs are more likely to be associated with 

them (Acord et al. 2013), possibly due to their higher quality diet (Anthony et al. 2008) and more 

frequent territory ownership (Reiter et al. 2014). Through intrasexual competition, only the 

highest quality females gain access to striped males and their territories, and females may be 

more aggressive as a result. If all males in the Eastern Cluster are striped, and thus presumably 

considered equally good mates, perhaps there is less of a need for increased aggression among 

females. Additionally, incomplete assortative mating (Anthony et al. 2008; Acord et al. 2013) 

may impose evolutionary constraints on the genome of each morph (West-Eberhard 1986). 

Morph fitness can be affected by the frequency of other morphs in a population and many 

morph-specific traits arise because they are advantageous for intermorph competition (Corl et al. 

2010). The loss of the unstriped morph in the Eastern Cluster may have altered social selection 

dynamics, whereby alleles that enhance the striped morph’s ability to compete with the unstriped 

morph (i.e., increased aggression and territorial behavior; Reiter et al. 2014) in the Central 

Cluster are no longer advantageous in the Eastern Cluster (McLean and Stuart-Fox 2014). 

Increased aggression in the Central Cluster, particularly by females, may be advantageous to 

compete with unstriped females for access to striped males. Conversely, the change in 

competitive environment in the Eastern Cluster among striped females may have led to rapid 

phenotypic selection that favored the release of agonistic behavior (West-Eberhard 1986) 

because competing for striped males and expending energy on aggression would be less 

necessary for females in striped monomorphic populations.  
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In summary, I found a higher degree of aggression and territoriality in the Central Cluster 

compared to the Eastern Cluster, and this was much more evident in females. The underlying 

genetic differentiation between the two clusters is the most probable cause of the observed 

geographic variation in intraspecific territorial behavior, although other possibilities such as 

interspecific competition, parasite load, and prey availability, as well as the role of morph 

frequency variation, are worth exploring. Additionally, testing naive neonate P. cinereus from 

the Central and Eastern clusters in controlled, laboratory conditions may be beneficial in 

demonstrating genetically fixed differences in agonistic behavior (Selby et al. 1996). Moreover, 

low-order streams have been found to inhibit dispersal and contribute to genetic differentiation 

among populations of P. cinereus in Virginia (Marsh et al. 2007). The Cuyahoga River is a 

major waterway that coincides with the steep genetic break between the Central and Eastern 

Clusters and where a strong shift in morph frequency occurs. With such substantial genetic 

divergence between the two genetic clusters used in my study, it is likely that gene flow is rare 

across the Cuyahoga River and quite possible that local selection pressures are operating on other 

behavioral traits aside from agonistic and territorial behavior. Examining geographic variation in 

behavior may be a valuable avenue of continued research to determine if divergent selection is 

occurring among populations of P. cinereus in northern Ohio and it allows for insight into the 

adaptive mechanisms of behavior associated with polymorphic species and loss of a morph.  
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TABLE 1.—Comparison of resident and control aggression indices (AI in s; mean ± SE) among 

localities1 within the genetic cluster (GC) known as the Central Cluster (C).2 Resident males and 

females from all populations had a higher mean AI with a conspecific intruder than with a 

surrogate control, except females from RR. Interpopulation differences were not significant 

among combined sexes or males; however, the AI of RR females was significantly lower when 

paired with a conspecific than females from BR and WC.  

GC Locality Sex n Resident/Control AI F, P Resident/Intruder AI F, P 

C BR All 16 62.11 ± 3.67 0.21, 0.88 106.90 ± 8.45 0.21, 0.87 

C RR All 16 59.84 ± 5.85 " 50.70 ± 7.71 " 

C WC All 15 44.99 ± 4.32 " 84.37 ± 7.93 " 

C BR M 7 47.02 ± 5.25 0.33, 0.71 108.13 ± 16.79 1.67, 0.22 

C RR M 8 35.09 ± 8.36 " 52.67 ± 14.69 " 

C WC M 8 35.16 ± 6.17 " 58.02 ± 7.18 " 

C BR F 9 73.85 ± 20.87 0.13, 0.93 105.93 ± 7.70 5.32, 0.02* 

C RR F 8 84.59 ± 29.70 " 48.73 ± 6.49 " 

C WC F 7 56.24 ± 10.24 " 114.50 ± 12.13 " 

  

 
1 Localities: Black River (BR), Rocky River (RR), West Creek (WC). 
2 𝛼 = 0.05. Asterisks indicate significant differences; * indicates P ≤ 0.05. 
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TABLE 2.— Comparison of resident and control aggression indices (AI in s; mean ± SE) among 

localities3 within the genetic cluster (GC) known as the Eastern Cluster (E). Resident males and 

females from all populations had a higher mean AI with a conspecific intruder than with a 

surrogate control and interpopulation differences were not significant (P > 0.05).  

GC Pop Sex n Resident/Control AI F, P Resident/Intruder AI F, P 

E DB All 16 37.90 ± 7.77 0.81, 0.49 55.44 ± 6.08 0.71, 0.53 

E SC All 16 45.96 ± 9.79 " 69.60 ± 10.01 " 

E TC All 14 22.17 ± 3.54 " 48.04 ± 5.17 " 

E DB M 9 50.52 ± 13.67 0.11, 0.92 53.31 ± 7.71 0.14, 0.89 

E SC M 8 49.89 ± 17.18 " 62.59 ± 13.18 " 

E TC M 7 36.33 ± 4.25 " 50.83 ± 4.73 " 

E DB F 7 21.67 ± 4.34 2.01, 0.16 58.19 ± 10.28 0.54, 0.56 

E SC F 8 42.04 ± 10.28 " 76.61 ± 15.95 " 

E TC F 7 8.01 ± 3.98 " 45.25 ± 9.79 " 

        
  

 
3 Localities: Doan Brook (DB), South Chagrin (SC), Tinker’s Creek (TC). 
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TABLE 3.—Comparison of resident aggression indices (AI in s; mean ± SE)  

with a surrogate control and with a conspecific intruder.4 Genetic cluster (GC)  

abbreviated for Central (C) and Eastern (E) Clusters. Male (M) and female (F)  

salamanders were more aggressive toward intruders compared to controls. 

GC Sex n Resident/Control AI Resident/Intruder AI F, P 

C All 47 55.88 ± 11.48 80.58 ± 8.58 2.96, 0.08 

C M 23 38.75 ± 6.58 71.41 ± 13.75 4.59, 0.02* 

C F 24 72.29 ± 21.28 89.36 ± 10.40 0.52, 0.50 

E All 46 35.92 ± 7.60 58.12 ± 7.43 4.36, 0.01* 

E M 24 46.17 ± 12.70 55.68 ± 8.97 0.37, 0.42 

E F 22 24.73 ± 13.26 60.77 ± 9.37 6.33, 0.009** 

  

 
4 𝛼 = 0.05. Asterisks indicate significant differences; * indicates P ≤ 0.05; ** indicates P ≤ 0.01. 
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TABLE 4. —Comparison of resident aggression indices (AI in s; mean ± SE)  

in the Central and Eastern Clusters.5 Central Cluster residents had a higher  

mean AI compared to the Eastern Cluster, indicating higher levels of aggression.  

Sex n Central Cluster AI Eastern Cluster AI F, P 

All 122 89.65 ± 5.90  56.48 ± 4.72 9.54, 0.002** 

M 61 88.21 ± 9.65 60.33 ± 5.33 3.11, 0.09 

F 61 91.13 ± 6.92 52.75 ± 7.83 6.76, 0.015* 

  

 
5 𝛼 = 0.05. Asterisks indicate significant differences; * indicates P ≤ 0.05; ** indicates P ≤ 0.01. 
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TABLE 5. — Comparison of aggressive behaviors (timed in s; mean ± SE) in the Central  

and Eastern Clusters by resident salamanders.6 Behaviors include All Trunk Raised (ATR),  

MT (Move Toward), and LT (Look Toward).  

Behavior Sex n Central Cluster Eastern Cluster F, P-adj 

ATR All 122 171.15 ± 16.01 138.71 ± 12.56 2.98, 0.25 

ATR M 61 160.11 ± 22.66 174.23 ± 21.42 0.10, 1.00 

ATR F 61 182.55 ± 22.91 69.99 ± 9.86 10.06, 0.003** 

MT All 122 23.45 ± 1.63 14.54 ± 1.12 9.99, 0.006** 

MT M 61 20.13 ± 2.06 17.45 ± 1.63 0.51, 1.00 

MT F 61 26.88 ± 2.50 11.72 ± 1.48 13.51, 0.003** 

LT All 122 7.40 ± 0.35 6.13 ± 0.27 3.96, 0.12 

LT M 61 7.34 ± 0.45 7.07 ± 0.42 0.10, 1.00 

LT F 61 7.45 ± 0.56 5.23 ± 0.30 6.02, 0.03* 

 

  

 
6 𝛼 = 0.01. Asterisks indicate significant differences; * indicates P-adj ≤ 0.05; ** indicates P-adj ≤ 0.01. 
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TABLE 6. — Comparison of submissive behaviors (timed in s; mean ± SE) by Central  

and Eastern Cluster resident salamanders.7 Behaviors include Move Away (MA) and  

Look Away (LA).  

Behavior Sex n Central Cluster Eastern Cluster F, P-adj 

MA All 122 3.25 ± 0.47 3.40 ± 0.49 0.025, 1.00 

MA M 61 2.46 ± 0.31 3.73 ± 0.48 1.12, 0.60 

MA F 61 4.07 ± 0.81 3.09 ± 0.69 0.42, 1.00 

LA All 122 12.85 ± 1.51 16.84 ± 2.77 0.82, 0.76 

LA M 61 14.51 ± 1.86  12.72 ± 1.63 0.16, 1.00 

LA F 61 11.13 ± 1.94 20.83 ± 5.03 1.64, 0.49 

 

  

 
7 𝛼 = 0.025. 
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TABLE 7. —Comparison of intruder and resident aggression indices  

(AI in s; mean ± SE).8 Genetic cluster (GC) abbreviated for Central (C)  

and Eastern (E) Clusters. Male (M) and female (F) resident salamanders  

had a higher mean AI than intruder salamanders, indicating a residency  

effect that was more pronounced in the Central Cluster. 

GC Sex n  AI as Intruder AI as Resident F, P 

C All 61 51.93 ± 7.26  87.88 ± 8.10 10.93, 0.002** 

C M 31 63.25 ± 10.38 83.39 ± 12.82 1.49, 0.16 

C F 30 40.23 ± 9.86 92.52 ± 9.93 13.96, 0.002** 

E All 58 48.15 ± 5.06 57.45 ± 6.84 1.19, 0.23 

E M 28 47.27 ± 5.38 62.49 ± 7.69 2.63, 0.09. 

E F 30 48.98 ± 8.48  52.75 ± 11.17 0.07, 0.73 

 

  

 
8 𝛼 = 0.05. Asterisks indicate significant differences; ** indicates P ≤ 0.01. 
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TABLE 8. —Differences in the average time spent in aggressive  

behaviors by male (M) and female (F) salamanders as residents and  

intruders in the Central Cluster (CC).9 Behaviors include All Trunk  

Raised (ATR), MT (Move Toward), and LT (Look Toward).  

Behavior Sex  n CC Intruder CC Resident F, P-adj 

ATR All 61 179.2 ± 21.12 162.64 ± 22.17 0.29, 1.00 

ATR M 31 193.12 ± 27.90 152.25 ± 31.27 0.95, 0.99 

ATR F 30 164.81 ± 32.11 173.37 ± 31.85 0.03, 1.00 

MT All 61 17.03 ± 1.79 23.79 ± 2.33 5.27, 0.03* 

MT M 31 17.52 ± 2.73 20.52 ± 2.91 0.57, 1.00 

MT F 30 16.53 ± 2.36 27.16 ± 3.61 6.07, 0.02* 

LT All 61 5.89 ± 0.40 7.39 ± 0.51 5.41, 0.08 

LT M 31 6.16 ± 0.54  7.42 ± 0.64 2.27, 0.46 

LT F 30 5.60 ± 0.60 7.37 ± 0.80 3.07, 0.27 

 

  

 
9 𝛼 = 0.01. Asterisks indicate significant differences; * indicates P-adj ≤ 0.05. 
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TABLE 9. —Differences in the average time spent in submissive  

behaviors by male (M) and female (F) salamanders as residents and  

intruders in the Central Cluster (CC).10 Behaviors include Move Away  

(MA) and Look Away (LA).  

Behavior Sex  n CC Intruder CC Resident F, P-adj 

MA All 61 5.74 ± 0.85 3.19 ± 0.67 5.61, 1.00 

MA M 31 6.83 ± 1.40 2.50 ± 0.67 7.70, 0.03* 

MA F 30 4.61 ± 0.90 3.89 ± 1.16 0.24, 1.00 

LA All 61 21.40 ± 3.86 12.71 ± 2.17 3.85, 0.03* 

LA M 31 23.30 ± 6.37 14.44 ± 3.30 1.52, 0.47 

LA F 30 19.44 ± 4.37 10.92 ± 2.81 2.69, 0.04* 

 

  

 
10 𝛼 = 0.025. Asterisks indicate significant differences; * indicates P-adj ≤ 0.05.  



 44 
 
 

 

TABLE 10. —Differences in the average time spent in aggressive  

behaviors by male (M) and female (F) salamanders as residents and  

intruders in the Eastern Cluster (EC).11	Behaviors include All Trunk  

Raised (ATR), MT (Move Toward), and LT (Look Toward).  

Behavior Sex  n EC Intruder EC Resident F, P-adj 

ATR All 58 141.63 ± 18.11 121.63 ± 18.37 0.60, 1.00 

ATR M 28 166.58 ± 26.85 176.97 ± 32.07 0.06, 1.00 

ATR F 30 118.34 ± 24.12 69.99 ± 14.06 3.00, 0.18 

MT All 58 18.85 ± 2.31 14.79 ± 1.62 2.06, 0.31 

MT M 28 19.85 ± 2.97 18.07 ± 2.37 0.22, 1.00 

MT F 30 17.91 ± 3.54 11.72 ± 2.11 2.25, 0.36 

LT All 58 5.69 ± 0.45  6.24 ± 0.38 0.88, 0.92 

LT M 28 5.79 ± 0.59 7.32 ± 0.57 3.48, 0.25 

LT F 30 5.60 ± 0.68 5.23 ± 0.43 0.21, 1.00 

 

  

 
11 𝛼 = 0.01. 
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TABLE 11. — Differences in the average time spent in submissive  

behaviors by male (M) and female (F) salamanders as residents and  

intruders in the Eastern Cluster (EC).12 Behaviors include Move Away  

(MA) and Look Away (LA).  

Behavior Sex  n EC Intruder EC Resident F, P-adj 

MA All 58 4.63 ± 1.06 3.46 ± 0.72 0.84, 0.70 

MA M 28 6.42 ± 1.96 3.86 ± 1.06 1.31, 0.54 

MA F 30 2.97 ± 0.84 3.09 ± 0.98 0.008, 1.00 

LA All 58 12.44 ± 3.60 17.13 ± 4.04 0.75, 0.83 

LA M 28 6.07 ± 1.19  13.17 ± 3.30 4.11, 0.11 

LA F 30 18.39 ± 6.74 20.83 ± 7.18 0.06, 1.00 

 

  

 
12 𝛼 = 0.025. 
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FIG. 1.—Time (s) spent in aggressive and submissive behaviors by female (white) and 

male (gray) residents in the Central and Eastern Clusters. (A.-E.) Aggression index (AI) with 

composite behaviors. (F.) All Trunk Raised. 𝛼 = 0.05 for AI; 𝛼 = 0.01 for aggressive behaviors 

MT, LT, and ATR; 𝛼 = 0.025 for submissive behaviors MA and LA. Asterisks indicate 

significant differences; * indicates P and P-adj ≤ 0.05; ** indicates P and P-adj ≤ 0.01. Data are 

presented as nested boxplots with the horizontal lines in the boxes representing medians, the “x” 

symbols representing means, the boxes indicating interquartile range, and the solid circles 

denoting outliers. 

 

 

FIG. 2.—Differences in the time spent in resident and intruder behaviors by female 

(white) and male (gray) salamanders in the Central Cluster. (A.-E.) Aggression index (AI) with 

composite behaviors. (F.) All Trunk Raised. 𝛼 = 0.05 for AI; 𝛼 = 0.01 for aggressive behaviors 

MT, LT, and ATR; 𝛼 = 0.025 for submissive behaviors MA and LA. Asterisks indicate 

significant differences; * indicates P and P-adj ≤ 0.05; ** indicates P and P-adj ≤ 0.01. Data are 

presented as nested boxplots with the horizontal lines in the boxes representing medians, the “x” 

symbols representing means, the boxes indicating interquartile range, and the solid circles 

denoting outliers. 

 

 

FIG. 3.—Differences in the time spent in resident and intruder behaviors by female 

(white) and male (gray) salamanders in the Eastern Cluster. (A.-E.) Aggression Index with 

composite behaviors. (F.) All Trunk Raised. 𝛼 = 0.05 for AI; 𝛼 = 0.01 for aggressive behaviors 
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MT, LT, and ATR; 𝛼 = 0.025 for submissive behaviors MA and LA. Data are presented as 

nested boxplots with the horizontal lines in the boxes representing medians, the “x” symbols 

representing means, the boxes indicating interquartile range, and the solid circles denoting 

outliers. 
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