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Abstract 

Within and among populations, alkaloid defenses of strawberry poison frogs (Oophaga pumilio) 

vary spatially, temporally, and with life history stage. Natural variation in defense has been 

implicated as a critical factor in determining the level of protection afforded to an individual 

from predators and pathogens. Oophaga pumilio tadpoles sequester defenses from nutritive eggs 

and are thus entirely dependent on their mothers for their alkaloids. However, it remains unclear 

how the alkaloid composition of a tadpole relates to that of its mother and if maternally 

provisioned defenses are effective against predators. Here, I demonstrate that natural variation in 

the alkaloid composition of mother frogs—even among individuals collected less than a few 

hundred meters apart—is reflected as variation in tadpole alkaloid composition. Mother frogs 

and their specific tadpoles were collected from La Selva Research Station in Costa Rica in order 

to make direct comparisons of the alkaloid profiles between mothers and their offspring. 

Additional tadpoles were collected for palatability assays to determine if maternally provisioned 

alkaloids provide meaningful protection from predators. Tadpoles, like mother frogs, varied 

widely in their alkaloid composition but contained the exact same types of alkaloids found in 

their mother. Late stage tadpole alkaloid quantity was highly correlated with the alkaloid 

quantity of the mother frog, and alkaloid quantity was the best predictor of tadpole palatability 

where tadpoles with higher alkaloid quantities were less palatable. Overall, the alkaloid profile of 

tadpoles are highly similar to that of their mother and variation in the alkaloid composition of 

mother frogs is translated as variation in the alkaloid composition of tadpoles. Mother frogs that 

provide greater quantities of alkaloids to their tadpoles likely ensure better protection for their 

offspring by providing defenses during one of the most vulnerable periods of life. Future studies 
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should examine how and if variation in alkaloid composition across the geographic range of O. 

pumilio translates to variation in tadpole alkaloid composition and the implications this has for 

protection from local predators and pathogens. 
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Introduction 

The use of chemical defenses against predators, pathogens, and parasites is widespread in nature. 

Most organisms are able to biosynthesize defensive chemicals, whereas some organisms must 

obtain them secondarily through a specialized diet of chemically defended prey items (Nishida 

2002; Saporito et al. 2012). The uptake, accumulation, and storage of secondarily derived 

defenses from diet is known as sequestration (Mebs 2001; Sanchez et al. 2019) and is a well-

studied phenomenon among phytophagous arthropods (reviewed in Opitz & Muller 2009); 

however, sequestration has also evolved independently in several groups of vertebrates 

(reviewed in Savitzky et al. 2012) including snakes (Hutchinson et al. 2007), amphibians (Daly 

et al. 1994; Saporito et al. 2009), and likely birds (Dumbacher et al. 2004; Dumbacher et al. 

2009). 

Within and among species, organisms that sequester defensive chemicals can vary widely 

in their chemical composition, and this variability may have multiple points of origin (Speed et 

al. 2012). Spatiotemporal variation in the abundance and availability of prey appears to directly 

affect a predator’s own chemical defenses (Saporito et al. 2007a; Hutchinson et al. 2013). For 

example, macrogeographic variation in prey defense (e.g., variation in availability of chemically 

defended prey across a species’ range) may result in large-scale variation in the sequestered 

defenses of predators (Saporito et al. 2006; Triponez et al. 2007). Furthermore, microgeographic 

variation in prey defenses may result in small-scale variation in the sequestered defenses of 

predators within and among neighboring populations (Pasteels et al. 1995; Moranz & Brower 

1998). Variation in sequestered chemical defenses may also originate from seasonal or long-term 

heterogeneity in prey availability (Malcolm & Brower 1989; Pasteels et al. 1995). Additionally, 
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chemical defenses within a species may vary with sex, age, and body size (Nishida & Fukami 

1989; Alonso-Mejia & Brower 1994; Speed et al. 2012). 

In many species, the presence of chemical defenses are dynamic with regard to life 

history stage. Some organisms may sequester defenses throughout their life cycle (Nishida & 

Fukami 1989; Eisner et al. 2000) whereas, in other organisms, defenses are temporary (Fordyce 

et al. 2005). The presence of defenses may be limited to one or a few life stages where 

compounds are sequestered, which can be early in development (Malcolm & Rothschild 1983) or 

as adults (Brown 1987). In many lepidopterans, defenses sequestered during larval stages are 

retained through metamorphosis and into adulthood (Malcolm & Brower 1989; Bowers & 

Williams 1995; Nishida 2002); however, the presence or effectiveness of these defenses may 

decrease with age (Alonso-Mejia & Brower 1994). In addition, some organisms are able to 

provision their offspring with chemical defenses prior to hatching or birth, though the 

effectiveness of these defenses can decrease with offspring growth and development (Hutchinson 

et al. 2008; Hayes et al. 2009; however see Williams et al. 2011). 

The provisioning of chemical defenses to offspring is thought to serve as an antipredator 

(and possibly antimicrobial) mechanism during one of the most vulnerable periods of life 

(reviewed in Gunzburger & Travis 2005). For example, female ornate bella moths (Utethesia 

ornatrix) provision egg clutches with pyrrolizidine alkaloids, which in turn act as a deterrent to 

their primary predator—the larvae of green lacewings (Ceraeochrysa cubana) (Eisner et al. 

2000). In some organisms, developing embryos absorb maternally provisioned chemical defenses 

and newly hatched offspring retain these defenses until they begin sequestering their own. In the 

Asian snake (Rhabdophis tigrinus), bufadienolides sequestered from a diet of toads are 

provisioned to embryos by gestating females. Neonates retain these chemical defenses post-
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hatching until they begin independently feeding on toads and sequestering bufadienolides 

(Hutchinson et al. 2008). Many other organisms provision chemical defenses to their young, 

including fireflies in the genus Photuris (González et al. 1999), harlequin frogs (Atelopus 

chiriquiensis) (Pavelka et al. 1977), and the rough-skinned newt (Taricha granulosa) (Hanifin et 

al. 2003). The chemical defenses acquired by offspring via maternal provisioning are highly 

variable (Eisner et al. 2000; Hanifin et al. 2003) and several studies have suggested a positive 

correlation between mother and offspring defense quantities (Hanifin et al. 2003; Hutchinson et 

al. 2008; Williams et al. 2011).  

A well-studied group of chemically defended vertebrates are the conspicuously colored 

poison frogs, which form a wide-ranging group of over 150 species with members in several 

families worldwide (reviewed in Saporito et al. 2012). Members of this group sequester their 

defensive chemicals from a diet of alkaloid-containing arthropods composed primarily of mites 

and ants (Saporito et al. 2004; Saporito et al. 2007b), but also millipedes and beetles (Daly et al. 

2000; Saporito et al. 2003). As a result, poison frogs are unpalatable to certain predators (Hantak 

et al. 2016; Murray et al. 2016) and likely protected from microbial infection (Mina et al. 2016; 

Hovey et al. 2018). Alkaloid type, number, and quantity are highly variable within and among 

poison frog species. Populations of a single species may differ from one another across 

geographic space as well as through time (Saporito et al. 2007a). Within and among populations, 

alkaloid profiles may differ between sexes (Saporito et al. 2010), across life-history stages 

(Stynoski et al. 2014a) and may increase with age and body size (Jeckel et al. 2015). Variability 

in alkaloid defenses among poison frogs appears to play an important role in their effectiveness 

as deterrents against predators (Bolton et al. 2017) and pathogens (Hovey et al. 2018). 
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In the poison frog family Dendrobatidae, both sexes of the strawberry poison frog 

(Oophaga pumilio) are chemically defended and invest in parental care. Males moisten terrestrial 

egg clutches for seven to 10 days and upon hatching, tadpoles are singly transported by mothers 

to water-filled leaf axils of plants. Mothers then return every one to two days for a period of six 

to eight weeks to provision the obligatory oophagous tadpoles with unfertilized (nutritive) 

alkaloid-containing eggs—providing both nutrition and defense to developing tadpoles (Stynoski 

et al. 2014a, 2014b). Maternal provisioning of alkaloids is particularly important, given that 

tadpoles cannot access the terrestrial alkaloid-containing arthropods necessary for obtaining 

chemical defenses on their own. Although maternal provisioning of defenses is a described 

phenomenon, the provisioning of alkaloid-laden nutritive eggs to already hatched tadpoles is the 

first known example of provisioning in vertebrates to occur post-hatching or birth. Since the time 

of its discovery, maternal provisioning of alkaloids in O. pumilio has also been experimentally 

demonstrated (Saporito et al. 2019). Provisioned alkaloids provide defense to tadpoles from 

predators; however, this has only been demonstrated in late stage tadpoles (Stynoski et al. 

2014b). Tadpole alkaloid quantity increases with both tadpole mass and developmental stage 

(Stynoski et al. 2014a; Saporito et al. 2019), suggesting that the level of defense against 

predators within a tadpole also increases over the course of development. Furthermore, alkaloids 

vary among females within and among populations, suggesting that these differences in alkaloid 

composition may be passed on to offspring (Saporito et al. 2007a; Saporito et al. 2010).  

The present study aimed to further understand some of the fundamental ecological factors 

involved in this form of chemical defense—in particular, how variation in mother frog chemical 

defenses relate to tadpole chemical defenses and how variation in defenses translate to offspring 

defense. Therefore, the specific objectives of my study were (1) to determine if variation in 
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alkaloid number, type, and quantity within a population of adult O. pumilio translated to 

variation in the alkaloids of tadpoles via maternal provisioning, (2) to determine if tadpole 

alkaloid quantity is correlated with mother alkaloid quantity, and (3) to determine if variation in 

tadpole alkaloid quantity results in differences in protection from predators (palatability). 

Naturally occurring variation in the alkaloid defenses of adult poison frogs results in variation in 

palatability to predators (i.e., palatability spectrum) as well as variation in overall protection 

from pathogens and disease (Bolton et al. 2017; Hovey et al. 2018). Because tadpole chemical 

defenses are entirely dependent on the defenses of the mother frog, an individual tadpole’s level 

of protection may also be entirely dependent on its mother. Therefore, variation in chemical 

defenses at the individual and population level may directly affect how well-protected an 

organism is from predators as well as from local parasites and pathogens. 

 

Methods 

Study site and frog collection. The present study was conducted at La Selva Research Station 

(10°25'52.33"N, 84° 0'12.74"W)—a private reserve located in Heredia Province, Costa Rica and 

managed by the Organization for Tropical Studies (OTS). The majority of the reserve is 

comprised of evergreen primary forest, but also includes selectively logged primary forest, 

pasture, and abandoned cacao plantations (McDade & Hartshorn 1994; Whitfield et al. 2007).  

In order to determine the relationship in alkaloid profiles between mothers and their 

tadpoles, behavioral observations to identify mother/tadpole pairs were conducted within the 

Huertos Plots at La Selva (10°26' N, 84° 0'46.38" W). The Huertos Plots are the site of an 

abandoned cacao plantation and provide an ideal location to observe parental care and egg 
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provisioning because O. pumilio are abundant and reproductively active (Donnelly 1989b; Gade 

et al. 2016; DeMarchi et al. 2018). Mother O. pumilio deposit tadpoles into naturally occurring 

water-filled leaf axils of plants such as Heliconia, bromeliads, and bananas (Musa) (Donnelly 

1989a; Haase & Pröhl 2002); however, mothers will also deposit tadpoles into cups (referred to 

as artificial tadpole-rearing sites), which mimic naturally occurring phytotelmata and allow for 

greater ease of access to tadpoles (Stynoski 2009; Stynoski et al. 2014a). Tadpole-rearing cups 

were constructed from 30 mL plastic polypropylene beakers each affixed to a single plastic knife 

with a zip-tie (Fig. 1). Two small holes were drilled in each cup to prevent excess rainwater from 

flushing tadpoles out of the top of the cup. A total of 786 cups were set up in transects in three 

separate arrays (hereafter plots) in the Huertos Plots with each set of cups affixed to a tree 

approximately 1.5 m off the ground (Fig. 2). Trees were selected at random every few meters to 

form the transects and the diameter at breast height (dbh) was recorded for every tree containing 

cups. Although tadpole-rearing cups were set up in transects in three separate plots, this was only 

to allow greater ease of access to each cup. The three plots represent a single field site 

comprising several hundred square meters and were not considered as independent entities. 

Tadpole-rearing cups were set out on 06 March 2019 and 07 March 2019 in order to allow 

mother frogs time to acclimate and begin using the artificial tadpole-rearing sites.  

Artificial tadpole-rearing cups were surveyed daily from 04 June 2019 – 07 July 2019 in 

order to identify cups that contained tadpoles (presence/absence) and to record the 

developmental stage of each tadpole (Gosner staging; Gosner 1960). To avoid any possible 

effects of physically manipulating tadpoles, tadpoles were only qualitatively staged in the field 

and therefore, reported developmental stages are estimates. Tadpoles that were present during a 
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census but were missing during a subsequent census were classified into three categories, 

following Stynoski 2009: predation, metamorphosis, or splashed out by raindrops.  

Cups containing tadpoles were targeted for behavioral observations to identify 

mother/tadpole pairs, and observations took place daily from 07 June 2019 – 05 July 2019 

between the hours of 0500-1130 when mother frogs are known to actively provision their young 

(Haase & Pröhl 2002). Tadpoles were selected for observation based on estimated mass and 

stage in order to ensure that tadpoles representing a wide range of development were collected. 

Targeted cups containing tadpoles were observed from a distance of ~3 m until a female frog—

presumably that tadpole’s mother—returned to provision her offspring. Mother O. pumilio do not 

recognize their own offspring and instead use spatial cues to recognize and relocate where they 

left their tadpole(s) (Stynoski 2009). Therefore, when a mother is provisioning a tadpole, it can 

be assumed that it is her offspring. Mothers collected as part of a mother/tadpole pair were 

classified as tadpole-rearing, meaning that they were found in a cup containing a tadpole and 

were observed performing maternal provisioning behavior (e.g., delivering tadpoles to a tadpole-

rearing cup, visiting a tadpole-containing cup, depositing nutritive eggs into a tadpole-containing 

cup). 

Mother frogs were observed until they had climbed fully into the tadpole-containing cup 

and had at least partially submerged their body in the water. Once a mother frog climbed fully 

into a tadpole-containing cup, she was captured with an aquarium net, placed in a one-gallon 

ZiplockTM bag, and transported back to an ambient laboratory. Tadpoles were collected using 

disposable polyethylene transfer pipets and stored in a 20 mL glass vial with water from that 

tadpole’s cup. A total of 13 mother/tadpole pairs were collected following this method. 

Additional tadpoles of varying developmental stages were collected from cups solely for use in 
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palatability assays. All tadpoles were collected from cups except for one tadpole that was 

collected directly from a mother’s back and was subsequently placed in a vial of rainwater 

collected from a nearby cup that did not contain a tadpole. This tadpole did not contain any 

alkaloids further indicating that tadpoles only sequester alkaloids from nutritive eggs. There was 

one case in which two tadpoles were deposited into a single cup, and so each tadpole was stored 

in a separate 20 mL glass vial. Both tadpoles were collected solely for the purpose of palatability 

assays and were not examined as part of a mother/tadpole pair. 

Following collection in the field, all mother frogs were weighed to the nearest 0.1 mg 

using a Pesola PPS200 digital pocket scale and measured for snout-to-vent length (adults; SVL 

19-22 mm) (Donnelly 1989b) to the nearest 0.1 mm using a Traceable® Digital Calipers. Mother 

frogs were handled as little as possible to prevent alkaloid secretion. Mother frogs were 

euthanized via freezing, following which their skins were removed and stored in separate 4 mL 

glass vials with Teflon-lined caps containing 2 mL of 100% methanol. Tadpoles were also 

weighed to the nearest 0.1 mg using a Pesola PPS200 digital pocket scale and then euthanized 

via freezing and stored wholly in separate 4 mL glass vials with Teflon-lined caps containing 2 

mL of 100% methanol. 

 

Palatability assays. To examine how differences in tadpole alkaloid composition throughout 

development determines the level of protection from predators, ant palatability assays were 

conducted with Ectatomma ruidum, following the methods of Bolton et al. 2017. Ants were 

collected from the lab clearings and the arboretum at La Selva using Jolly Ranchers™ as bait. 

Individual E. ruidum were collected with pressure sensitive forceps between 1300-1700 hrs, 

stored in small plastic containers (~10 individuals per container) in an ambient laboratory, and 
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starved for a period of 48 hours prior to trials (Bolton et al. 2017). All ants collected within a 2 m 

radius of each other were assumed to be from the same nest (Lachaud 1990), and nests were not 

sampled more than three times throughout the study. 

Palatability assays were performed using the methanol extracts from sixteen tadpoles that 

were selected to represent a range of developmental stages (stages 25-44) and masses (0-190 

mg). Palatability assays consisted of feeding trials wherein ants were placed individually into the 

center of a small, glass petri dish or arena (~6 cm diameter) and allowed to choose between two 

sugar solutions: one containing alkaloids and one without alkaloids. To create the alkaloid 

sucrose solution, 1 mL of the original 2 mL methanol/tadpole solution was transferred to a 

separate vial and evaporated to dryness. Following evaporation, 250 µL of a sucrose solution 

(50% ethanol, 20% sucrose) was added to the vial to create an alkaloid/ethanol/sucrose solution. 

Each petri dish contained two coverslips, one with 10 µL of an alkaloid/ethanol/sucrose solution 

and one with 10 µL of a control solution (50% ethanol, 20% sucrose). The location of the 

solutions within the petri dish were randomized for each trial and ants were selected randomly 

with respect to nest location. Ants were allowed a five-minute period to detect and sample either 

solution, but ants were only considered to have successfully fed on a solution when the ant 

submerged its mandibles in a solution for more than three seconds (Bolton et al. 2017). If an ant 

did not feed on either solution within a five-minute period, the ant was removed and replaced 

with a second ant. If the second ant also did not feed on either solution within a five-minute 

period, the solutions were replaced, the arena cleaned with a 10% ethanol solution, and a new 

trial was initiated with a new ant. Fifteen trials were run per tadpole (n = 16 tadpoles) for a total 

of 240 trials. Arenas were cleaned with a 10% ethanol solution between trials. Tadpole 

palatability was quantified by assigning each tadpole a palatability score based on a palatability 
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index that ranged from -1 to 1. Individuals scoring closer to -1 were considered more unpalatable 

than individuals closer to 1. The palatability index was calculated as follows: (# ants that fed on 

the alkaloid solution) – (# ants that fed on the control solution) ÷ total number of ants. All 

palatability scores of 0 or greater were considered to represent a palatable prey source (Bolton et 

al. 2017), and because the intent of the palatability assays were to determine if tadpole alkaloids 

act as an effective deterrent against potential arthropod predators, no statistical distinction was 

made between neutral (0) and positive palatability scores. Therefore, all positive palatability 

scores were reduced to a value of 0 for statistical analyses (Dyer et al. 2003). 

 

Alkaloid fractionation. Alkaloids from each of the 13 mother frog skins and 20 whole tadpoles 

were extracted using an acid-base technique (Saporito et al. 2010; Jeckel et al. 2015; Hovey et 

al. 2018). For each sample, 50 μL of 1 N HCL and an internal standard of nicotine were added to 

1 mL of the original methanol extract. This solution was then concentrated to 100 μL using 

nitrogen gas, followed by the addition of 200 μL of deionized water. Four extractions were then 

performed, each time using 300 μL of hexane and the hexane layer was discarded each time. 

NaHCO3 was added to the remaining solution in order to basify it. This solution was then 

extracted three times, each time using 300 μL of ethyl acetate. Excess water was removed from 

each ethyl acetate layer using anhydrous Na2SO4 and then blown down with nitrogen to dryness. 

Finally, 100 μL of methanol was added. 

 

Alkaloid analysis. Gas Chromatography-Mass Spectrometry (GC-MS) was used to identify, 

characterize, and quantify alkaloids (Saporito et al. 2010; Jeckel et al. 2015; Hovey et al. 2018). 

The GC-MS is a Varian 3900 GC coupled with a Varian Saturn 2100 T ion trap MS using a 30 m 
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x 0.25 mm ID Varian Factor Four VF-5 ms fused silica column. A temperature program ran from 

100 to 280 °C at a rate of 10 °C per minute using helium as a carrier gas (1 mL/min). Each 

alkaloid fraction was analyzed three times using electron impact-mass spectrometry (EI-MS) and 

once using chemical ionization-mass spectrometry (CI-MS). Alkaloids were identified by 

comparing GC retention times and mass spectral properties to already established dendrobatid 

alkaloid data (Daly et al. 2005; additional citations in Hovey et al. 2018), and were quantified by 

comparing alkaloid peaks to that of the nicotine internal standard using a Varian MS Workstation 

v.6.9 SPI (Hovey et al. 2018). Alkaloids detected in quantities below 0.5 µg in mother frogs and 

0.01 µg in tadpoles were excluded from further analysis (Lawrence et al. 2019), except in cases 

where the alkaloids that a mother provisioned to her tadpole fell below the 0.5 µg threshold. 

Quantity thresholds were selected to represent a balance between the biological relevance of the 

alkaloids’ quantity against predators and pathogens (Weldon et al. 2006) and also attempt to 

encompass the full range of alkaloid types present in mothers and their tadpoles.  

 

Statistical analyses. Linear regressions were used to test for relationships between tadpole mass 

and alkaloid quantity (µg/tadpole) as well as the relationship between tadpole mass and number 

of alkaloids per tadpole. The relationships between tadpole Gosner stage and alkaloid quantity 

(µg/tadpole) as well as the relationship between tadpole Gosner stage and number of alkaloids 

per tadpole were also tested using linear regressions. In O. pumilio tadpoles, mass is considered a 

better predictor of alkaloid quantity than total length (Stynoski 2012); however, understanding 

how alkaloid sequestration in tadpoles coincides with the development of granular glands is also 

critical. Therefore, an additional linear regression was run to determine if tadpole mass is a 

reliable predictor of Gosner stage. For the palatability tests, additional linear regressions were 
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run to examine the relationship between tadpole palatability and Gosner stage, tadpole mass, 

tadpole alkaloid quantity, and number of alkaloids per tadpole respectively.  

To gain a better understanding of how a tadpole’s alkaloid profile relates to that of its 

mother, linear regressions were also used to determine the relationship between a mother frog’s 

alkaloid quantity and her tadpole’s alkaloid quantity. These data were examined by determining 

the relationships between late-stage tadpoles (41-44) only and their mothers (n = 6) and all 

alkaloid-containing tadpoles and their mothers (n = 9). Late stage tadpoles were analyzed 

separately from all other mother/tadpole pairs in order to avoid any potential confounding effects 

of tadpole gland development on sequestration capability. Alkaloids are present in tadpoles as 

young as stage 30 (Saporito et al. 2019), which approximately coincides with the early stages of 

granular (poison) gland development (stages 32-33, Stynoski & O’Connell 2017). Individuals 

appear to experience an exponential increase in alkaloid quantity in the stages shortly thereafter 

(ca. stages 30-35, Stynoski et al. 2014a; Saporito et al. 2019), suggesting that the process of 

gland development observed during this developmental period influences the capacity for 

alkaloid uptake. Late stage tadpoles (ca. stage 40 and up) are more likely to have developed 

granular (poison) glands (Stynoski & O’Connell 2017) and therefore the alkaloid quantity in 

those individuals is less likely to be influenced by the differentiation of glands, thus providing a 

more robust comparison between mother frogs and tadpoles. For the purposes of describing 

tadpole alkaloid composition with respect to development of granular glands, tadpoles were 

placed into one of three developmental age groups: early stage (pre-gland development; 25-29), 

middle stage (beginning of gland development; 30-32), and late stage (fully developed glands; 

41-44). All mother frog/tadpole comparative analyses were corrected for both mother skin mass 

and tadpole total mass (Stynoski et al. 2014a).  
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Poison frog alkaloids can be classified into two main categories—those with branched 

and unbranched carbon skeletons—and inferences about dietary sources of alkaloids can be 

derived by examining these characteristics of a frog or tadpole’s alkaloid composition. Broadly 

speaking, branched alkaloids are typically mite-derived whereas unbranched alkaloids are 

typically ant derived (reviewed in Saporito et al. 2012). Because O. pumilio alkaloid composition 

is currently thought to reflect the alkaloid composition of the sympatric arthropod community, 

the alkaloid composition (e.g., branched and unbranched alkaloids) of the adult frogs should 

reflect what dietary arthropods are available in the environment (Saporito et al. 2007a). To gain 

more insight into the arthropod sources of alkaloids in mother frogs and their tadpoles, two-tailed 

two-sample t-tests were performed to compare number of alkaloids and alkaloid quantity 

between branched and unbranched alkaloids for both mother frogs and tadpoles. 

Adult O. pumilio alkaloid composition is known to vary among populations that are 

spatially separated on a large geographic scale and within populations on a smaller geographic 

scale (Saporito et al. 2007a; Hovey et al. 2018). Because large-scale geographic variation in 

alkaloid composition has been shown to be influential in providing protection against predators 

and pathogens (Bolton et al. 2017; Hovey et al. 2018), small-scale variation in the alkaloid 

composition of mother frogs may also be important in contributing to variation in tadpole 

alkaloid composition and therefore variation in protection within a population. Nonmetric 

multidimensional (NMDS) scaling was used to visualize differences in alkaloid composition 

among mother frogs. 

Finally, mother O. pumilio should elect to deposit their tadpoles in artificial tadpole-

rearing cups when naturally occurring bromeliad density is low because the cups serve as 

additional reproductive resources that allow mother frogs to raise tadpoles where they would 



16 

 

otherwise be unable (Donnelly 1989a). Therefore, bromeliad density within the study site may 

predict tadpole spatial deposition. A logistic regression was performed in order to assess if there 

was any relationship between bromeliad presence and the presence of tadpoles deposited in cups. 

Bromeliad density was collected on the basis of presence/absence for each tree within the study 

site equipped with a tadpole-rearing cup; bromeliads were only marked as present if they were of 

sufficient size to harbor developing tadpoles. Heatmaps depicting interpolated tadpole and 

bromeliad density were created using inverse distance weighting (IDW) in ArcMap® GIS 

version 10.7. Tadpole-rearing cups were spatially placed close together (within the range of error 

for most GPS units) and located under dense rainforest canopy. Therefore, transects in the study 

site were replicated by creating scatterplots using artificial GPS coordinates. Heatmaps created 

using ArcMap® GIS were then overlaid on a Google Earth image at their approximate locations. 

Predicted tadpole densities were created using known tadpole density (i.e., presence of tadpoles 

in cups) for all tadpoles documented in cups throughout the study period. Predicted bromeliad 

densities were extrapolated from presence/absence values of bromeliads on trees with cups. All 

statistical analyses were conducted in R (R Core Team 2018, v.3.5.1) and Primer 6 (v.6.1.6). 

 

Results 

Tadpole-rearing cup surveys. A total of 70 tadpoles were observed in artificial tadpole-rearing 

cups over the course of the collection period (9% occupancy rate). Tadpole cup occupancy and 

tadpole fate (metamorphosis, predation, splashed out by raindrops) are summarized in Table 1 

and Table 2. A heatmap indicating tadpole cup occupancy for the study site is show in Figure 3. 

Tadpole density was highest in plot 3 and lowest in plot 1, and there was no relationship between 
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bromeliad presence and the spatial deposition of tadpoles into tadpole-rearing cups (odds ratio = 

1.12, p = 0.71). Heatmaps comparing tadpole and bromeliad density for the study site are shown 

in Figure 4. The diameter at breast height for trees with tadpole-rearing cups spanned 8-180 cm 

and mother frogs did not appear to prefer any one tree size for tadpole deposition (Fig. 5). 

Mother O. pumilio were observed visiting, provisioning, and/or depositing tadpoles early in the 

morning, beginning at 0530 hr, with visits to cups tapering off (but not stopping completely) 

after 1000 hr (Fig. 6). 

Mother frog and tadpole alkaloid composition. Of the 13 mother/tadpole pairs, alkaloids were 

identified in all 13 mother frogs and nine tadpoles (four tadpoles did not contain any alkaloids). 

A total of 172 alkaloid types (including isomers) in 21 structural classes were identified across 

all mother frogs and all alkaloid-containing tadpoles (Table 3). On average (mean±SE), mother 

frogs contained 523 ± 145 µg of alkaloids (range: 180-1,239 µg) and tadpoles contained 7 ± 2 µg 

(range: 0-25 µg). The relative variation in alkaloid composition among mother frogs (n = 13) is 

represented in Figure 7.  

Relationship between mother frog and tadpole alkaloids. Tadpoles contained all of the same 

types of alkaloids as in their mothers even if present only in trace amounts (<0.01 µg). Major 

alkaloid structural classes shared between mother frogs and tadpoles included 5,8-disubstituted 

indolizidines, 5,6,8-trisubstituted indolizidines, piperidines, and pyrrolidines (Table 3). There 

was no relationship in alkaloid quantity between tadpoles and their mothers when all alkaloid-

containing tadpoles were included in the analysis (R2 = -0.2, n = 18, p = 0.40; Fig. 8); however, 

when examining the same relationship between only late-stage tadpoles (41-44) and their 
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mothers, a significant positive trend was detected between female and tadpole alkaloid quantity 

(R2 = 0.62, n = 12, p = 0.03; Fig. 9).  

 

Ontogenetic shifts in tadpole alkaloid composition and palatability. Both alkaloid quantity (R2 = 

0.599, n = 20, p < 0.001) and number of alkaloids per tadpole (R2 = 0.695, n = 20, p < 0.001) 

significantly increased with tadpole mass (Fig. 10). Similarly, tadpole alkaloid quantity (R2 = 

0.83, n = 20, p < 0.001) and number of alkaloids per tadpole (R2 = 0.80, n = 20, p < 0.001) 

significantly increased with developmental stage (Fig. 11). A visualization of the relationship 

between alkaloid composition, developmental stage, and tadpole mass is shown in Figure 12. 

There was also a significant relationship between tadpole mass and tadpole developmental stage 

(R2 = 0.85, n = 20, p < 0.001; Fig. 13), and tadpoles appeared to begin sequestering alkaloids in 

the middle stages of development (stages 30-32, Fig. 14). 

Tadpole alkaloid quantity was a significant predictor of palatability (R2 = 0.28, n = 16, p 

= 0.02; Fig. 15a), but not the total number of alkaloids per tadpole (R2 = 0.12, n = 16, p = 0.10; 

Fig. 15b). Tadpole mass was not a significant predictor of palatability (R2 = -0.0004, n = 16, p = 

0.33; Fig. 15c), and neither was Gosner stage (R2 = 0.02, n = 16, p = 0.26; Fig. 15d). It is 

important to note that while tadpoles contained all of the alkaloids present in their mother, only 

alkaloids present in quantities greater than 0.01µg were used for tadpole alkaloid analyses. 

Dietary origin of alkaloids. When comparing differences in alkaloid composition between 

branched and unbranched alkaloids in mother frogs and tadpoles, there was no significant 

difference in the number of alkaloids (t = -0.22, df = 24, p = 0.83). Additionally, there was no 
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significant difference for branched or unbranched alkaloid quantity for mother frogs (t = -0.62, df 

= 24, p = 0.54) or tadpoles (t = -0.48, df = 16, p = 0.64). 

 

Discussion 

Previous studies have demonstrated that O. pumilio tadpoles sequester alkaloid defenses from 

nutritive eggs (Stynoski et al. 2014a; Saporito et al. 2019), but it has remained unclear how 

tadpole alkaloid profiles relate to their mother’s. In the present study, tadpoles were found to 

share very similar alkaloid profiles (type and quantity) to their mothers, suggesting that tadpole 

defenses in O. pumilio are largely a reflection of their mother’s defenses. All tadpoles contained 

the same alkaloids as their mothers, providing the first direct evidence that the type of maternally 

provisioned alkaloids is identical between mother and offspring. The quantity of alkaloid 

defenses in a tadpole were also related to the amount of alkaloid in mother frogs but only for 

late-stage (older) tadpoles (stages 41-44). In general, older tadpoles that contained larger 

quantities of alkaloids tended to have mothers with proportionally higher quantities of alkaloid 

defenses. Although this was not the case for younger tadpoles, this is likely due to differences in 

poison glands between younger and older tadpoles, and in particular, their ability to store 

alkaloids. Late-stage tadpoles have fully developed poison glands (Stynoski & O’Connell 2017), 

which are physiologically mature and capable of storing alkaloids, whereas young tadpoles just 

beginning to develop glands may not have the same physiological ability or capacity to store 

alkaloids (see further discussion below). Therefore, it is not surprising that older tadpoles were 

more likely to reflect the actual differences in alkaloid quantities of their mothers when 

compared to younger tadpoles. Collectively, these findings suggest that both the type and 
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quantity of alkaloid defenses in mother O. pumilio are passed on directly to their offspring. 

Furthermore, from a physiological perspective, the high degree of similarity in alkaloid profiles 

suggests that mother frogs are passively provisioning alkaloid defenses to nutritive eggs, rather 

than actively modulating what is provisioned. In a similar system, mother Asian tiger snakes 

(Rhabdophis tigrinius) also appear to passively provision bufadienolide-defenses to their 

offspring (Hutchinson et al. 2008). However, mother O. pumilio are also known to vary in their 

provisioning behavior (Maple 2002; Dugas et al. 2016), and are more likely to provide larger 

meals to their older and more developed offspring (Dugas et al. 2016), suggesting that increases 

in alkaloid defenses in older tadpoles may also be attributed to differences in behavioral 

provisioning. Finally, adult O. pumilio are known to vary significantly in alkaloid defenses 

among populations (Saporito et al. 2007a), suggesting that the alkaloid composition of tadpoles 

also varies in a similar manner. Future studies should examine how natural variation in alkaloid 

composition as well as differences in provisioning behavior among mothers from different 

populations of O. pumilio influence the alkaloid composition of tadpoles and its implications for 

tadpole defense. 

 Provisioned alkaloid defenses are presumed to act as an effective deterrent against certain 

tadpole predators (Stynoski et al. 2014a, 2014b) and possibly microbes (Hovey et al. 2018), and 

variation in these defenses likely plays an important role in determining a tadpole’s level of 

protection. In the present study, tadpole alkaloid quantity was the best predictor of palatability, 

where tadpoles with greater alkaloid quantities were less palatable to a model arthropod predator. 

Tadpole palatability, however, was not directly related to mass or developmental stage, 

suggesting that size and age alone are not good predictors of defense levels. Previous 
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experimental studies have demonstrated that late-stage O. pumilio tadpoles are chemically 

defended against bullet ants (Paraponera clavata) and ctenid spiders (Cupiennius sp.) (Stynoski 

et al. 2014a, 2014b); however, relatively little is known about natural tadpole predators in the 

wild (reviewed in Santos & Cannatella 2011). Anecdotal and experimental records of tadpole 

predation events suggest that tadpoles of all sizes and developmental stages are preyed upon by 

snakes and spiders (Maple 2002; Stynoski et al. 2014a, 2014b; Sellmeijer & van den Burg 2020), 

but none of these reports include a measure of tadpole alkaloid quantity. In the present study, 

11% (8 of 70) of the tadpoles being reared by mothers in artificial cups—ranging in size from ca. 

stage 25-43—were predated upon. Although a specific predator was not identified, these findings 

suggest that predation risk is not based solely on the presence or absence of alkaloids. Although 

tadpoles with greater alkaloid quantities appear to be less palatable to an arthropod predator, the 

likelihood of a potential predator attacking and consuming an O. pumilio tadpole is also 

dependent on the specific predator and its physiology. Certainly, there is evidence of snakes that 

are immune to the alkaloid defenses of adult O. pumilio (and other alkaloid-defended poison 

frogs), which likely provides them similar immunity from defended tadpoles (Saporito et al. 

2007c; Jovanovic et al. 2009; Lenger et al. 2014). Future research should explore predators of O. 

pumilio tadpoles in the wild, and the role maternally provisioned chemical defenses play in 

protecting tadpoles from a variety of predators. Additional work should address how and if 

predators are able to determine if tadpoles contain alkaloids (e.g., size, chemical cues, etc.), and 

if predators target young tadpoles that have not yet begun sequestering alkaloids.  

In the present study, very small alkaloid quantities were detected in tadpoles as young as 

stage 27 (20 mg), yet tadpoles did not consistently demonstrate a capacity for sequestering 
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alkaloids until reaching stages 30-32 (ca. 80 mg) (Fig. 14). Poison glands in O. pumilio tadpoles 

begin their development around stages 32-33, which approximately coincides with the detection 

of maternally provisioned alkaloids in tadpoles (Stynoski et al. 2014a; Stynoski & O’Connell 

2017; Saporito et al. 2019). The variable presence of alkaloids in early stage tadpoles (< stage 

30) suggests that gland development largely controls when tadpoles are physiologically able to 

sequester (i.e., store) maternally derived alkaloid defenses. Therefore, the detection of alkaloids 

in tadpoles that have not yet developed glands, in the present study and Saporito et al. 2019, may 

not be the result of sequestration by those individuals, but may instead represent the presence of 

alkaloid-laden nutritive eggs passing through the digestive tract of these tadpoles. Further 

implicating the importance of gland development on the sequestration of alkaloids in tadpoles is 

the observation that tadpoles just beginning to develop glands only possessed minute quantities 

of alkaloids, whereas late-stage tadpoles (stages 41-44) possessed much larger quantities (Fig. 

12). Although tadpoles begin to develop glands as young as stage 32, glands do not begin to 

mature until much later in development (ca. stage 40), suggesting that tadpoles are not 

physiologically capable of fully sequestering alkaloids until glands are more fully developed 

(Stynoski & O’Connell 2017). Furthermore, nothing is known about the location of alkaloids in 

nutritive eggs, which could also influence when tadpoles are able to begin accumulating 

alkaloids. It is known that young tadpoles only eat the inner yolk of nutritive eggs, and do not 

consume the entire nutritive eggs (yolk and outer jelly capsule) until later in development (Dugas 

et al. 2016). Therefore, it is possible that alkaloids are deposited into the jelly capsule of nutritive 

eggs, which would prevent (or reduce) access of alkaloids to younger tadpoles until they are able 

to consume eggs in their entirety. In other organisms that maternally provision, however, 

defensive chemicals are deposited primarily into egg yolks (Hanifin et al. 2003; Hutchinson et 
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al. 2008). Further research is needed to identify the location of alkaloid defenses in provisioned 

eggs and determine if mother frogs deposit alkaloids equally into clutches throughout the 

provisioning period. Independent of the location of alkaloids within eggs, the development and 

maturation of poison glands in O. pumilio tadpoles appears to be particularly important to 

alkaloid sequestration, which likely has consequences to how well protected a tadpole is from 

predators (and possibly microbes) throughout the course of its development. 

Within the three plots of tadpole-rearing cups, there was no relationship between 

bromeliad presence and the spatial deposition of tadpoles, meaning that tadpoles were not more 

likely to be found in tadpole-rearing cups where bromeliad density was low (Fig. 4). Oophaga 

pumilio tadpoles are dependent on phytotelmata for growth and eventual metamorphosis, but 

bromeliads represent only one group of plants that provide this resource. Mother frogs may also 

elect to deposit their tadpoles into other naturally occurring phytotelmata such as the axils of 

banana (Musa) and Dieffenbachia plants (Haase & Pröhl 2002; Maple 2002). Because only the 

presence of bromeliads were recorded within the study site, it is possible that other phytotelmata 

were abundant and thus, tadpole-rearing sites were not a limited resource driving the deposition 

of tadpoles into cups. Additionally, tadpoles spend their entire developmental period within the 

confines of a single nursery and are therefore vulnerable to any associated predation or 

desiccation risks indicating that mother frogs should be selective in where they deposit their 

offspring (Maple 2002). Artificial tadpole-rearing cups can vary from naturally occurring 

phytotelmata in their temperature, water quantity, and possibly predation rates and light-levels 

(Maple 2002). Mother frogs may preferentially select nurseries that combine the most optimal of 

these characteristics—which could be either artificial tadpole-rearing cups or naturally occurring 
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phytotelmata—suggesting that bromeliad presence alone is not enough to determine the spatial 

deposition of tadpoles within a landscape. 

Maternal provisioning of nutritive eggs is not unique to Oophaga pumilio. All members 

of the genus Oophaga are obligate egg-eaters, and recently, both Oophaga granulifera (Saporito 

et al., unpublished data) and Oophaga sylvatica (Fischer et al. 2019) have been described 

providing alkaloid-laden nutritive eggs to tadpoles. Additionally, the mantellid poison frog, 

Mantella laevigata, provision their offspring with alkaloid-laden eggs suggesting the convergent 

evolution of maternal provisioning of alkaloids within poison frogs (Fischer et al. 2019). 

However, not all poison frogs that provision nutritive eggs also provision alkaloids. Dendrobatid 

poison frogs in the genus Ranitomeya are facultative egg-eaters, and mother frogs only provide 

nutritive eggs when food resources within a nursery are low (Brown et al. 2010), and alkaloids 

are absent in the facultative egg-eaters Ranitomeya variabilis and Ranitomeya ventrimaculata 

(Saporito et al., unpublished data). Future research should explore the extent to which maternal 

provisioning of alkaloids is present among egg eating poison frogs and should also examine how 

natural alkaloid variation within and among species contributes to tadpole alkaloid composition 

and the implications for how alkaloid variation impacts protection from local predators and 

pathogens. 

Oophaga pumilio is the first known organism to maternally provision chemical defenses 

to offspring post-hatching or birth. Tadpoles sequester maternally derived alkaloid defenses from 

nutritive eggs and as a result, share a similar alkaloid profile to their mother. All alkaloid types 

found in a mother frog were also found in her tadpole. Mother frogs with high alkaloid quantities 

also had tadpoles with high alkaloid quantities—a quality in tadpoles that was associated with a 
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decrease in palatability. Individual mother frogs varied in their alkaloid composition and because 

tadpoles depend solely on their mother for their alkaloid defenses, tadpoles also varied in their 

alkaloid composition. Variation in adult alkaloid composition has important implications not 

only for adult protection against predators and pathogens, but also how well-protected tadpoles 

are from similar threats.  
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Tables 

Table 1. Tadpole fate organized by plot. Percentages for tadpole fate reflect the number of tadpoles in each plot divided 

by the totals listed in the right-hand column. 

          

  Plot 1 Plot 2 Plot 3 Total 

Total number of tadpoles 12 (17%) 21 (30%) 37 (53%) 70 

Predation 3 (38%) 3 (38%) 2 (25%) 8 

Metamorphosis 2 (22%) 4 (44%) 3 (33%) 9 

Splashed out by raindrops 1 (33%) 1 (33%) 1 (33%) 3 
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Table 2. Tadpole cup occupancy organized by plot. Except for the number of cups per plot, percentages for tadpole 

cup occupancy are a reflection of the number of cups occupied divided by the total number of cups present within 

that plot. 

          

  Plot 1 Plot 2* Plot 3 Total 

Number of cups 248 (31%) 238 (30%) 300 (38%) 786 

Number of cups occupied by tadpoles 12 (5%) 21 (9%) 34 (11%) 67 (9%) 

Number of cups with multiple tadpoles 0 (0%) 0 (0%) 3 (1%) 3 (0.4%) 

Number of trees with both cups occupied 2 (2%) 0 (0%) 8 (5%) 10 (3%) 

*One tadpole-rearing cup was used twice by separate females to deposit tadpoles (i.e., once one female had completed raising her 

tadpole in the cup, another female deposited her tadpole into the same cup).  
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Table 3. Types of alkaloids (excluding isomers and unknown alkaloids) found in Oophaga pumilio mother frogs and 

tadpoles organized by structural class. 

 

HTX, histrionicotoxin; PTX, pumiliotoxin; aPTX, allopumiliotoxin; deoxyPTX, deoxypumiliotoxin; deoxyhPTX, deoxyhomopumiliotoxin; 

DHQ, decahydroquinoline; 3,5-P-disubstituted pyrrolizidine; 3,5-I, 3,5-disubstituted indolizidine; 5,8-I, 5,8-disubstituted indolizidine; 

5,6,8-I, 5,6,8-trisubstitutedindolizidine; 1,4-Q, 1,4-disubstituted quinolizidine; Lehm, lehmizidine; Pyr, pyrrolidine; Pip, piperidine; Tri, 

Tricyclic; CPQ,cyclopentaquinazoline; SpiroP, spiropyrrolizidine; Unclass, unclassified. 

 

HTX PTX aPTX deoxyPTX deoxyhPTX DHQ 3,5-P 3,5-I 5,8-I 5,6,8-I 1,4-Q Lehm Izidine Pyr Pip Tri CPQ Spiro Polyzonimine Unclass

291A 209F 225E 281B 193F 221C 195F 223AB 195I 207C 219B 277A 205G 183B 211I 193L 251J 222 151B 181C

225F 207O 251A 223H 203A 209E 233A 275G 211B 197B 211J 207GH 236 197D

275B 251K 205A 223A 279E 211F 211T 225B 252A 209G

265J 207A 231B 225A 225C 225I 269E

209I 237C 233B 225H 239L 271E

223D 237L 253I 239O

225M 249U 241D

233M 251S 241G

235B 253H 253U

247E

249O

271A

273B

275F
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Figures 

 

Figure 1. (a) Artificial tadpole rearing cups. Two cups were affixed to each tree; (b) tadpole 

deposited into a cup by a mother O. pumilio.  

  

a b 



 

42 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Aerial view of the river and trail systems and the three plots containing transects of 

tadpole-rearing cups at La Selva Research Station, Costa Rica. The black lines mark the trail 

system at La Selva. SOC = Sendero occidental, SLV = Sendero Las Vegas, STR = Sendero Tres 

Rios. Plot locations are approximate. 

Costa Rica 

La Selva Research Station 
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Figure 3. Aerial view of the three plots containing transects of tadpole-rearing cups at La Selva 

Research Station, Costa Rica. Each black dot represents two tadpole-rearing cups attached to a 

single tree. Predicted occupancy of cups by tadpoles (density) is shown for each plot where a 

value of 1 indicates a definitive tadpole presence. Plot locations are approximate. 
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                          Plot 3 

       

Figure 4. Heatmaps representing the interpolated density of tadpoles (blue) occupying tadpole-

rearing cups and the interpolated density of naturally occurring bromeliads (green) within each 

of the three plots.  Each black dot represents two tadpole-rearing cups attached to a single tree. 

For both tadpole density and bromeliad density, a value of 1 indicates a definitive tadpole or 

bromeliad presence. 
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Figure 5. Frequency distribution of tadpole-cup containing trees diameter at breast height (dbh) 

for (a) all trees containing tadpole cups (n = 393) and (b) trees containing tadpole cups occupied 

by at least one tadpole during the course of the study.  
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Figure 6. Observed activity period for mother Oophaga pumilio visits to tadpole-rearing cups. 

For each 15-minute time interval, the number of visits to cups represents the total number of 

(different) mother frogs that visited a tadpole-rearing cup containing a tadpole. Twenty-five 

mother frogs were observed visiting tadpole cups between 0500 and 1130 from June 7, 2019 to 

July 5, 2019. All observations of visits to tadpole-rearing cups were conducted with mother frogs 

as a component of the present study. 
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Figure 7. Nonmetric multidimensional scaling (NMDS) plot of alkaloid composition of 

Oophaga pumilio mother frogs (n = 13). Each circle represents a different mother frog and the 

distance between each circle represents the relative difference in alkaloid composition. Each 

circle is scaled for the quantity of alkaloid present in that individual. 
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Figure 8. The relationship between mother Oophaga pumilio alkaloid quantity and her tadpole’s 

alkaloid quantity. Four tadpoles of the total 13 mother/tadpole pairs did not contain alkaloids and 

so are excluded here. 
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Figure 9. The relationship between mother Oophaga pumilio alkaloid quantity and her tadpole’s 

alkaloid quantity. The mother/tadpole pairs selected for this comparison comprises six late-stage 

tadpoles (stages 41-44) and their respective mothers. 
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Figure 10. The relationship between Oophaga pumilio tadpole (n = 20) (a) mass and alkaloid 

quantity and (b) mass and number of alkaloids. 
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Figure 11. The relationship between Oophaga pumilio tadpole (n = 20) (a) Gosner stage and 

alkaloid quantity and (b) Gosner stage and number of alkaloids. 
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Figure 12.  The relationship between Oophaga pumilio tadpole mass and Gosner stage as a 

function of both (a) alkaloid quantity (µg/tadpole) and (b) total number of alkaloids. Each circle 

(n = 20) represents a different tadpole and each circle is scaled to the quantity of alkaloid in an 

individual or the number of alkaloids respectively. 
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Figure 13. The relationship between Oophaga pumilio tadpole (n = 20) Gosner stage and tadpole 

mass. 
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Figure 14. The relationship between tadpole alkaloid quantity and tadpole mass (n = 20). Light 

blue circles = early stage tadpoles (25-29); medium blue triangles = middle stage tadpoles (30-

32); dark blue squares = late stage tadpoles (41-44). Categories were selected to represent 

tadpoles before the development of glands (early stage), tadpoles undergoing the development of 

glands (middle stage), and tadpoles with more mature glands (late stage). 
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Figure 15. The relationship between Oophaga pumilio tadpole (n = 16) (a) alkaloid quantity and 

palatability, (b) number of alkaloids and palatability, (c) mass and palatability, and (d) 

developmental stage and palatability 
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