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Nutrient conservation trait responses of low resource adapted chaparral shrubs to 

increased resource availability 

 

Abstract 

Traits that increase mean nutrient retention times are essential to plant 

performance in low resource environments, where multiple stressors (low water and 

nutrients) are present. Although physiological responses to either water or nutrient stress 

are well understood, fewer studies have investigated the interaction of these stressors 

from a phylogenetically-controlled, whole-plant perspective. This research focused on 

three, phylogenetically-controlled pairs of shrubby evergreen species from the California 

chaparral that either grow on or off serpentine soils, which differ in nutrient availability. 

Using greenhouse and field studies, the responses of these plants to altered water and 

nutrient availability were evaluated. The greenhouse study addressed trade-offs among 

nutrient conservation traits, trait plasticity in response to resource availability, and 

instantaneous measures of plant stress to increased water and nutrients. The responses of 

the greenhouse-grown juvenile plants were then compared to juvenile plants growing in 

the field. I hypothesized that: 1) all species would respond positively to increased water 

and nutrients by increasing biomass production and having higher rates of gas exchange 

and nutrient use; 2) faster growing species would exhibit a larger degree of plasticity; and 

3) there would be an effect of phylogeny among congener pairs. Juvenile species’ trait 

responses were negatively affected by increased water but not by increased nutrients, and 

faster growing species generally exhibited higher plasticity. Additionally, phylogeny 

constrained how these traits respond to environmental changes. Future research will be 
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crucial to the California chaparral and other low-resource ecosystems as anthropogenic 

environmental changes continue to accelerate their impact potential, especially near 

biodiversity hotspots.  

 

1. Introduction 

     In low-resource systems, soil aridity can exacerbate and amplify soil nutrient 

stresses due to its negative impacts on soil organic matter decomposition and 

mineralization (Austin et al., 2004) and plant nutrient uptake (Nye and Tinker, 1977). As 

a result, plants adapted to these environments possess a suite of traits that promote 

conservative resource use (Chapin, 1980). Trade-offs in traits that increase mean nutrient 

retention times are key to plant growth and survival in these environments (Aerts, 1999; 

Reich et al., 2003; Kou et al., 2016), as high mean retention times promote nutrient 

conservation (Aerts, 1990; Wright and Westoby, 2003). However, these systems are 

exposed increasingly to anthropogenic stressors, such as altered precipitation patterns due 

to climate change (Cayan et al., 2008; Trenberth, 2011) and atmospheric nutrient 

deposition (Aerts and Chapin, 2000). Given that their plasticity is typically low (Lambers 

and Poorter, 1992), low-resource adapted plants may be unable to alter trait responses 

under environmental change scenarios to maintain fitness and survivorship.  However, 

most studies on low-resource adapted plants have focused on single stressors (Funk, 

2008; O’Dell et al., 2006), and therefore, it is unknown how they may respond to 

concurrent changes in water and nutrient availability.  

Plants adapted to low-nutrient, arid systems typically are slow growing species 

that produce lower overall biomass, thicker, long-lived leaves, and higher root mass 
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ratios than those that are adapted to high resource availability (Grime, 1977; Aerts and 

Chapin, 2000; Wright et al., 2001; Lambers et al., 2008; Rao et al., 2016). Leaf longevity 

increases when plants invest more heavily in leaf thickness and defense over metabolic 

components, and plant nutrient absorption and storage potential is augmented as root 

biomass allocation is increased (Wright et al., 2001; Rao et al., 2016). Together, these 

traits can increase mean nutrient residence time but come at a cost to future carbon gain 

(Wright et al., 2001, 2002; Drenovsky et al., 2010). 

Investing more in leaf structural components decreases the amount of carbon that 

can be acquired by the plant. As leaf thickness increases and more nitrogen is allocated to 

cell wall proteins (Lambers and Poorter, 1992), less nitrogen is allocated to 

photosynthesis, decreasing nitrogen use efficiency (PNUE: the ratio of carbon gain to leaf 

nitrogen; Reich et al., 1998; Wright et al., 2003). As PNUE decreases, less water is lost to 

transpiration, increasing water use efficiency (WUE: the ratio of the amount of carbon 

gained per water lost; Lambers et al., 2008). Maintaining a high WUE in order to limit 

water loss is especially important for low-nutrient adapted plants growing in dry 

conditions (Vaitkus and McLeod, 1995; Xu et al., 2007). In addition, phosphorus storage 

in vacuoles, supporting luxury consumption (nutrients taken up from the soil and stored 

until needed under limiting soil nutrient conditions; Chapin, 1980), can impact carbon 

gain and thus decrease photosynthetic phosphorus use efficiency (PPUE: the ratio of 

carbon gain to leaf phosphorus; Hidaka and Kitayama, 2009).  

Furthermore, plants from low-resource environments tend to exhibit proficient 

resorption (moving nutrients from senscing leaves to storage tissues; Chapin 1980; 

Killingbeck, 2004), which increases mean nutrient residence time (Wright and Westoby, 
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2003). By internally recycling nutrients through resorption, fewer nutrients need to be 

absorbed from the soil but requires investment in nutrient mobilization and storage (Silla 

and Escudero, 2003). Based on these trade-offs, either root nutrient absorption or leaf 

nutrient resorption may be the best strategy for increasing mean nutrient retention time, 

depending on soil nutrient availability (Wright and Westoby, 2003). Thus, multiple traits 

influence mean nutrient residence time, but they may come at a cost if investment in one 

trait decreases dependence on another—i.e., the traits may be compensatory. 

However, it is rare for resorption processes to be placed within studies of whole-

plant nutrient budgets, so little is understand about how multiple plant traits (e.g., growth 

rate, allocation, and resorption) may interact. Moreover, slow-growing species, which are 

typically less plastic, and fast-growing species, which are generally more plastic, differ in 

their ability to respond to increased nutrients (Campbell and Grime, 1989; Lambers and 

Poorter, 1992; Grime and Mackey, 2002). Therefore, the potential for compensatory 

action in response to resource amendment may depend on trait plasticity. For example, 

low water and nutrient availability should increase plant root allocation, but have 

negative effects on nutrient resorption. Therefore, because differences in plasticity exist, 

fast and slow growing species may differ in their ability to compensate for poor 

resorption with greater root allocation. 

Although most physiological responses to either water or nutrient stress are well 

understood (e.g., Field et al., 1983; Wright et al., 2003; Hidaka and Kitayama, 2009), 

fewer studies have comprehensively investigated the interaction of nutrient and water 

stress on low-nutrient adapted species from a phylogenetically-controlled, whole-plant 

perspective. Evaluating the interacting effects of multiple stressors is necessary to 
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understanding plant responses to anthropogenic environmental change. Likewise, 

accounting for evolutionary history can help determine whether trait responses are the 

result of adaptation, a consequence of shared common ancestor (Felsenstein, 1985), or 

both. 

This research evaluates how related species from differing nutrient availabilities 

respond to altered water and nutrient availability, particularly with respect to potential 

compensatory nutrient conservation mechanisms. This research focused on a suite of 

related, shrubby species from the California chaparral. Within the chaparral, areas of 

serpentine soils (those derived from ultramafic bedrock and low in nutrients; Harrison 

and Rajakaruna, 2011) host shrub species adapted to low water and nutrients; many of 

these species are endemic to California’s serpentine soils. These serpentine soils often 

form mosaics with interspersed non-serpentine soils, and these soil mosaics are home to 

congener species growing only on or only off serpentine soils, providing an ideal study 

system to study related species adapted to different soil types (different levels of 

nutrients), but within the same climate conditions. Furthermore, California chaparral 

systems are predicted to experience change in precipitation frequency and intensity 

(Cayan et al., 2008) and an overall increase in temperature as a result of climate change 

(Lenihan et al., 2003; Bachelet et al., 2016). Likewise, urban and agricultural pollution 

threaten the California chaparral with atmospheric nutrient deposition (Bobbink et al., 

2010; Fenn et al., 2003, 2010). 

The goal of this study was to compare how phylogenetically-controlled pairs of 

plant species adapted to contrasting resource environments would respond to differing 

water and nutrient availabilities in a common garden greenhouse experiment, and to 
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compare greenhouse trait responses to those expressed by mature and immature plants in 

the field. This study addressed: (1) trade-offs among nutrient conservation traits; (2) 

overall trait plasticity; and (3) instantaneous measures of plant stress. It is hypothesized 

that: (1) all species would respond positively to increased water and nutrients by 

increasing biomass production and having higher rates of gas exchange and nutrient use; 

(2) faster growing species would exhibit a larger degree of plasticity; and (3) congener 

pairs would respond similarly to resource amendment as a consequence of their shared 

evolutionary history. As a result, the higher nutrient adapted species are predicted to have 

greater compensation amoung nutrient consrvation traits than the lower nutrient adapted 

species.  

 

2. Materials & Methods 

2.1 Site and Species Description 

The University of California Donald and Sylvia McLaughlin Natural Reserve, 

Lower Lake, California, USA is characterized by serpentine and non-serpentine soils that 

are dominated by chaparral shrublands, grasslands, and seeps. The climate is 

Mediterranean, with dry, hot summers and cool, wet winters with temperatures ranging 

from 40° C in the summer to below 0° C in the winter (University of California Davis, 

2009). Annual precipitation is ≈ 75 cm (30-year average; US Climate Data, 2017). The 

chaparral ecosystem at the Reserve is downwind from agricultural areas in the California 

Coast Range, making it a target for anthropogenically-caused atmospheric nutrient 

deposition (Fenn et al., 1998). 
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Three congeneric pairs of evergreen chaparral shrubs were used in this study: 

Arctostaphylos manzanita Parry, Ceanothus cuneatus (Hook) Nutt., and Quercus 

berberidifolia Liebm. grow on non-serpentine soil, whereas A. viscida Parry, C. jepsonii 

Greene, and Q. durata Jepson grow on serpentine soil. Ceanothus and Arctostaphylos 

species require specific cues for germination. Ceanothus species germinate in response to 

fire cues, whereas species of Arctostaphylos germinate in response to a combination of 

fire cues and scarification by acid in a mammalian gut. However, Quercus readily 

germinates and requires no special germination cues.  

 

2.2 Greenhouse Experiment 

2.2.1 Initial conditions 

Fruits of all species were collected from multiple populations at McLaughlin 

Natural Reserve from at least 10 maternal plants per species. Arctostaphylos spp. and 

Ceanothus spp. fruits were collected in 2012 and stored at 28° C to promote after-

ripening and maintain desiccated conditions, whereas Quercus spp. were collected in 

winter 2016 and stored at 4° C to prevent germination prior to planting. Because there are 

inherent differences in seed viability, germination requirements, germination percentages, 

and seed or fruit size, seed pre-treatments and germination conditions differed by species. 

Following protocol developed in our lab, Arctostaphylos spp. were germinated in fall of 

2016, whereas Ceanothus spp. and Quercus spp. were germinated in January 2017. 

Arctostaphylos and Ceanothus seeds were removed from fruits by hand prior to 

treatments. Arctostaphylos spp. were scarified by soaking in concentrated sulfuric acid 

for 6 hrs. Seeds were rinsed in deionized water until pH paper indicated the rinse solution 
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was neutral. Seeds were then soaked in < 2% liquid smoke treatments for 12 hours to 

imitate chemical cues found in wildfire smoke. Ceanothus spp. seeds were placed in 

boiling water for 6 min. To promote germination, seeds of Arctostaphylos spp. and 

Ceanothus spp. were germinated in nutrient agar under full spectrum growth lights 

(PPFD: 100 µmol/s-m2) in a laboratory at John Carroll University, University Heights, 

Ohio, USA. Upon first appearance of the cotyledons, seedlings were transferred into 4 X 

14 cm deep seedling tubes (SC7R Ray Leach Cone-tainer, Stuewe & Sons, Inc.) with a 

mix of 1:1 sand and fritted clay mixture that contained 1 g of water storing crystals 

(Miracle-Gro Lawn Products, Inc) homogenized throughout the growing medium. 

Quercus spp were planted immediately into 7 X 25cm deep tree tubes (D40H Deepot, 

Stuewe & Sons, Inc.) containing sand and fritted clay and placed under full-spectrum Na 

halide growth lights (PPFD: 350 µmol/s-m2) in the greenhouse. When the specimens of 

Arctostaphylos and Ceanothus had at least three sets of true leaves and were able to 

withstand a higher PPFD without risk of rapid desiccation (approx. 3 months of growth), 

these species were moved to the greenhouse. 

Within one week of planting, all species were watered with a 10% modified 

Hoagland’s solution (Epstein, 1972) and a 10% Bonide Captan Fungicide solution to 

minimize fungal growth. A modified Hoagland’s solution was supplied twice more 

within the first month of growth. Fungicide was reapplied twice more after approximately 

one and two months of growth. Once the plants were well-established (April 13, 2017), 

all species were transplanted into deep, 2.83 L pots (TP414 Tall One Treepot, Stuewe & 

Sons, Inc.) to ensure enough rooting space for the duration of the study, and plants were 

allowed to adjust to these pots for two weeks prior to initial treatment. 
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2.2.2 Experimental Design  

Treatment initiation began on May 8, 2017. Species were assigned to treatments 

using a randomized complete block design with each species having 10 replicates for 

each of four treatments that were represented once per block. Treatments were: (1) high 

nutrients (N, P, K), high water; (2) low nutrients, high water; (3) high nutrient, low water; 

and (4) low nutrients, low water. High nutrient treatments consisted of 2 grams of 10-10-

10 slow release NPK fertilizer (0.2 g total N and 0.2g P2O5; Miracle-Gro Lawn Products, 

Inc), whereas low nutrient treatments did not have any added fertilizer. Fertilizer was 

applied once to the high nutrient treatments at treatment initiation to represent a natural 

spring nutrient pulse. High water represented a soil water capacity ≥ 18%, and low water 

treatments maintained a soil water capacity of ≈ 9%. These water treatments were chosen 

to mimic a very wet season that could be observed under climate change scenarios and a 

typical dry season. Soil water availability was monitored three times a week using a 

Campbell Scientific Hydrosense II probe (Campbell Scientific Inc., North Logan, Utah). 

Initially for high water treatments, 250 mL of water was added if soil moisture was < 

18%, (see Khasanova et al., 2013). For low water treatments, no water was added if soil 

moisture was > 9%, but 100 mL of water was added if the soil moisture was < 9%. After 

three weeks of treatment, plant water demand had increased as a consequence of plant 

growth and longer day lengths; therefore, high water plants received 500 mL every day 

unless soil moisture capacity was > 18%. This watering regime was followed until 

October 23, 2017, at which point all plants were allowed to slowly dry-down, mimicking 

end-of-season field conditions encouraging leaf senescence. Seasonal dry-down was 

encouraged by decreasing water addition treatments and maintaining the soil water 
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capacity at lower levels. The high water treatment was maintained at 11 %, and plants 

were given 100 mL of water when soil moisture levels were not met. The low water 

treatment was maintained at 9 % soil moisture capacity, and plants were given 50 mL of 

water when soil moisture levels were not maintained. Some plants in the low water 

treatment were large enough to need 100 mL of water in order to maintain a 9 % soil 

moisture capacity (Table 1). Also at this time, the greenhouse was set to cooler conditions 

similar to winter months at the field site (daytime: 13–18° C; night: down to 7° C). 

During the duration of this experiment, fungal growth and powdery mildew were 

evident on some plants. To combat fungal diseases, 100 mL of Bonide Captan Fungicide 

was applied four times throughout the experiment. When fungicide was applied, a 100 

mL of water normally allocated for each daily treatment was substituted with the 100 mL 

of fungicide. If a sample did not need watering that day, fungicide was applied the next 

time water was required. When powdery mildew was observed, the affected leaf was 

treated with soapy water and 1 % Rose Rx 3 in 1 solution, alternating when one was no 

longer effective, and then rinsed with small amounts of water. 

 

2.2.3 Measurements 

Physiological and morphological measurements were made on a subset of plants 

from each treatment. Gas exchange was measured on the youngest fully mature leaf using 

a LI-COR 6400XT Portable Photosynthesis System to assess instantaneous plant nutrient 

use efficiency and water use efficiency (LI-COR Inc., Lincoln, Nebraska, USA). 

Following measurement, the leaf was harvested and used to measure projected leaf area 

via image analysis (WinRhizo, etc.) in order to correct area-based gas exchange rates. 
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Gas exchange measurements were measured midday on July 17, 2017 (24° C; sunny) and 

again on August 25, 2017 (22° C; sunny) when the plants were experiencing maximal 

seasonal growth. CO2 flow was set to 400 µmols s-1, the CO2 mixer to 400 µmol mol-1, 

and the light level in the LED chamber to a PPFD slightly above ambient conditions 

(1300 µmol m-2s-1). Three subsamples were taken at 10-seconds intervals for each 

replicate plant. IRGAs were matched every 3 plants. All leaves harvested at this time 

were dried and weighed to be included in further biomass analyses. 

Stem height was measured four times throughout the experiment. Initial stem 

height was measured during treatment initiation. Stem height was measured from soil 

level to apical meristem. As soil levels shifted throughout the experiment, nail polish was 

used to mark the soil level on plant stems at the initial stem height reading. Stem height 

was also recorded on 8 July, 11 September, and 1 December 2017 and was measured 

from the nail polish marking to the apical meristem. These measurements were used to 

determine relative growth rates (increases in stem height over time; mm/day; Hunt, 1982) 

of each sample. Senescent leaves were collected throughout the fall drawdown treatment 

phase, and the date of collection was recorded. 

 

2.2.4 Harvest  

A destructive harvest was performed on 1 and 2 December, 2017, at which point 

remaining senescent leaves were collected to determine nutrient resorption proficiency 

(sensu Killingbeck, 1996); these leaves were set aside for later analysis. Belowground 

biomass was separated from aboveground biomass at the soil level. Soil was removed 

from the belowground biomass, and all biomass was dried at 65°C until constant mass 
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was achieved. Once dried, roots, stems, and leaves were rinsed to remove excess soil or 

dust, allowed to dry for another 48 hours at 65° C, and weighed separately. The leaves 

previously harvested for physiological measurements were included in the final leaf 

masses at this time. A soil sample from each replicate was taken in order to analyze total 

nitrogen and extractable phosphorus at the University of California Davis on a later date. 

Total nitrogen and phosphorus were analyzed for green leaves collected during the 

harvest and for senescent leaves. Prior to analyses, all biomass was ground using a Wiley 

mill and a #40 mesh screen. Samples too small to be ground using a Wiley Mill were 

hand ground using a stainless steel mortar and pestle. Total leaf nitrogen concentration 

was analyzed via a CN analyzer (ECS 4010; Costech Analytical, Valencia, California, 

USA). Total leaf tissue phosphorus was analyzed via ICP-OES (Plasma 400; Perkin-

Elmer, Waltham, Massachusetts, USA), following dry-ashing and acid dissolution. 

Phosphorus resorption proficiency was not determined due to low senescent leaf sample 

sizes. Senesced leaf N and P represent resorption proficiency of these nutrients (sensu 

Killingbeck, 1996). 

 

2.3 Field Experiment 

In late June 2017, field measurements were made on 10 mature and 10 immature 

plants of each species of interest at the University of California Donald and Sylvia 

McLaughlin Natural Reserve. The non-serpentine sampling site was located along an 

access road and adjacent hill (N 38 52.747, W 122 26.625). The immature specimens 

were found atop this hill and along the roadside. The serpentine site was located on a 

steep hill (N 38 51.999, W 122 24.148) that had been partially burned by a wildfire in 
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2016. The mature specimens were all located on the unburnt section, whereas most of the 

immature specimens were found in the burnt areas. Plants were selected based on size 

similarity to one another in order to measure plants that were roughly the same age. 

Immature species selected for study were similar in size (< 75 cm) to those grown in the 

greenhouse experiment at the time of physiological measurements. Midday gas exchange, 

leaf nitrogen, and leaf phosphorus were measured following the same methods as in the 

greenhouse experiment. For gas exchange measurements, CO2 flow was set to 400 µmols 

s-1, the CO2 mixer to 400 µmol mol-1, and the light level in the LED chamber to a PPFD 

slightly above ambient conditions (1800 µmol m-2s-1). Fully mature green leaves for 

nitrogen and phosphorus analysis were harvested from each plant, photographed for later 

SLA analysis, and dried until constant weight. Using a model 1000 pressure bomb 

chamber (PMS Instruments, Albany, Oregon, USA), midday stem water potential was 

measured on a subset of samples. A plastic bag was placed over the shoot before 

removing it from the plant to ensure transpiration did not continue. The sample was 

placed on ice until measured. Bark was removed prior to measurement to prevent phloem 

sap from obscuring water potential measurements. These measurements were used to 

compare plants growing in natural conditions to the plants grown in the greenhouse. Five 

soil samples were taken at a depth of 15–20 cm from areas within each site where the 

majority of our sample mature and immature species were located. The soil was sieved to 

determine percent gravel (< 2mm), and the rest of the soil was used to analyze soil 

nitrogen and extractable phosphorus concentration. 
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2.4 Analysis 

2.4.1 Nutrient use and conservation trait calculations 

 Plant relative growth rate (RGR) was calculated using the following equation: 

RGR =  final height/starting height 
days since initial stem height measurement 

  

Gas exchange and leaf nutrient data were used to calculate instantaneous water use 

efficiency (ratio of the amount of carbon gained per water loss; A/gs, µmol mol-1), 

photosynthetic phosphorus use efficiency (ratio of carbon gain to leaf phosphorus; µmol 

CO2 mol P-1 s-1), and photosynthetic nitrogen use efficiency (ratio of carbon gain to leaf 

nitrogen; µmol CO2 mol N-1 s-1).  

WUE =  photosynthetic rate 
conductance 

PPUE =  photosynthetic rate 
 (P gkg-1*SLA kg/m2*mol P) 

PNUE =  photosynthetic rate 
 (N gkg-1*SLA kg/m2*mol N) 

  

Trait plasticity on RGR, total biomass, A, PPUE, PNUE, WUE, and senesced leaf 

nitrogen was determined using a PIv analysis (see Valladares et al., 2006). 

 

2.4.2 Statistical Analysis 

To identify factors influencing physiological and morphological response 

variables, mixed-model MANOVAs were used. Greenhouse data were analyzed using 

MANOVAs that included congener pair (random effect), species (random effect), block 

(random effect), water treatment (fixed effect), nutrient treatment (fixed effect), and 

origin (serpentine or non-serpentine; fixed effect) as the main effects (see Funk et al. 
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2015). The interaction effect was the two-way interactions of water and nutrients, 

nutrients and origin, and water and origin, and a three-way interaction of water, nutrients, 

and origin. Field data were analyzed using MANOVAs that included congener pair 

(random effect), species (random effect), soil (serpentine or non-serpentine; fixed effect), 

and age (fixed effect) as the main effects. The interaction effect was the two-way 

interaction of soil and age. Physiological traits (A, WUE, PNUE, and PPUE) for the 

greenhouse data and the field data, biomass related traits (RMR, RGR, and total 

biomass), tissue chemistry (green leaf N and P) and soil components (N, P, K, electrical 

conductivity (E.C.), and pH) were grouped together for separate MANOVA models. 

Instantaneous physiological traits were averaged between the two dates of measurements 

for the greenhouse data. Assumptions of MANOVA (equal variance and normal 

distribution) were tested with a Shapiro-Wilks test and a Bartlett’s test, and corrected 

when possible before a MANOVA model was run. For the soil and greenhouse 

physiological MANOVA’s, data were transformed using a log10 transformation to better 

meet these assumptions. Because of low sample sizes, ANOVAs were run for field water 

potential and greenhouse nitrogen resorption. All analyses were run using the R statistical 

program (R coding team, 2016) using version 3.3.1 (2016-06-21). 

 

3. Results 

3.1 Greenhouse Experiment 

3.1.1 Physiological measurements 

Physiological responses depended on the water and nutrient treatment the species 

received (F4,78 = 6.137; Pillai = 0.239; p < 0.001). In general, the low water, high nutrient 
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treatment tended to have higher rates of A and PPUE and lower rates of PNUE than other 

treatments (Figure 1), whereas the high water, low nutrient plants had low rates of A, 

WUE, and PPUE, and moderate rates PNUE.  

 

3.1.2 Biomass measurements 

There was a significant interaction between water and nutrients (F3,195 = 13.563; 

Pillai = 0.173; p < 0.001), water and origin (F3,195 = 4.091; Pillai = 0.059; p < 0.01), and 

nutrients and origin (F3,195 = 8.240; Pillai = 0.113; p < 0.001) for growth and biomass 

allocation measures (RMR, RGR, and total biomass). In general, plants receiving the low 

water, high nutrient treatment had faster growth rates and a larger overall biomass (Figure 

2) than plants receiving all other treatments. Plants treated with high water and no added 

nutrients had the slowest RGR and lowest total biomass. RMR was lowest under the low 

water, high nutrient treatments and generally was highest in the high water, low nutrient 

treatment. Non-serpentine species under low water treatments had the fastest growth rate 

and largest total biomass. When given additional water, both serpentine and non-

serpentine species decreased in RGR, total biomass, and increased slightly in 

belowground allocation. However, the serpentine species always had a slightly lower 

RGR and total biomass when given water than the non-serpentine species. When only 

observing the nutrient treatments, non-serpentine species had a higher RGR and larger 

total biomass in the high nutrient treatment as compared to the low nutrient treatments of 

all species. RMR was lowest in the serpentine species in the high nutrient treatments and 

low water treatments.   
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3.1.3 Tissue chemistry 

There was a significant interaction between water and nutrients (F2,156 = 24.208; 

Pillai = 0.237; p < 0.001) and between nutrients and origin (F2,156 = 6.394; Pillai = 0.076; 

p < 0.01) for green leaf nitrogen and phosphorus. For all species, the low water, high 

nutrient treatment resulted in the highest green leaf nitrogen, whereas the lowest 

concentration of nitrogen were in the plants under the high water, low nutrient treatment, 

as well as the high water, high nutrient treatments (Figure 3). Green leaf phosphorus 

concentration was the lowest in the low water, high nutrient treatment. In the low nutrient 

treatments, the serpentine species tended to have lower green leaf nitrogen and 

phosphorus concentrations, whereas the high nutrient treatments resulted in similar green 

leaf nitrogen and phosphorus concentrations between the serpentine and non-serpentine 

species.  

There was a significant two-way interaction between water and nutrients (F1,79 = 

4.236; p < 0.05) for senesced leaf nitrogen. Generally, the low water, high nutrient and 

high water, high nutrient treatments had the least amount of nitrogen resorbed, whereas 

the high and low water treatments that also had low nutrients resorbed the most nitrogen 

from their leaves. In general, plants receiving high nutrients began senescing leaves 

sooner than plants in the low nutrient treatments, with high nutrient plants beginning leaf 

senescence up to 23 days earlier than plants in other treatments (F1,115=6.948; p<0.01).  

 

3.1.4 Plasticity 
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Overall, non-serpentine species were generally more plastic than the serpentine 

species, and traits associated with growth rate and biomass accumulation were more 

plastic than those associated with instantaneous physiological measures or tissue 

chemistry. Additionally, although not true for every trait, there was some evidence that 

congener pairs were similarly plastic, particularly for senesced leaf nitrogen and RGR 

(Table 3).  

 

3.1.5 Tradeoffs 

Based on the PCA visualization of trait responses, species responded more to 

environmental pressures than phylogenetic influences, and most resource conservation 

traits tended to group closely together (Figure 4). Whereas the Quercus species tended to 

group close together regardless of treatment, all other species responses were driven by 

the water and nutrient treatments. Those plants that received the low water, high nutrient 

treatment generally also expressed resource conservation traits more strongly than plants 

in other treatments. Most resource conservation traits were complementary to one another 

as the vectors representing these traits were close to one another. However, there was a 

direct tradeoff between WUE and PNUE. Contrary to expectations, there was no direct 

tradeoff between RMR and senesced leaf nitrogen. 

 

3.2 Field Observations 

3.2.1 Physiological measurements 

Origin (F4,103 = 9.490; Pillai = 0.269; p < 0.001), age (F4,103 = 5.074; Pillai = 

0.165; p < 0.001) and species (F16,424 = 6.948; Pillai = 0.831; p < 0.001) were the main 
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drivers of physiological function for plants growing under field conditions. Serpentine 

species had higher rates of A, PNUE, and PPUE and lower WUE than non-serpentine 

species. Mature species had higher rates of A and PPUE but lower PNUE than the 

immature species. WUE did not differ by age. Ceanothus jepsonii had the highest rates of 

A (8.15 µmol m-2 s-1) and PPUE (152.55 µmol CO2 mol P-1 s-1), whereas A. manzanita 

had the highest water use efficiency (87.99 µmol mol-1). The Arctostaphylos species had 

the highest PNUE. The Quercus species were the lowest in A, WUE, and PNUE, and Q. 

berberidifolia the lowest in PNUE (9.1 µmol CO2 mol N-1 s-1; Figure 5). Water potential 

in these plants was dependent on species (F4,51 = 25.668; p ≤ 0.001) and age (F1,51 = 

169.026; p ≤ 0.001). Arctostaphylos Manzanita (-3.05 MPa) and C. cuneatus (-3.05 MPa) 

had the lowest water potentials, whereas all other species were similar in their water 

potential values. The juveniles had slightly lower water potentials than the adults (Figure 

6).  

 

3.2.2 Tissue chemistry 

Origin (F2,105 = 27.421; Pillai = 0.343; p < 0.001), age (F2,105 = 14.428; Pillai = 

0.216; p < 0.001), and species (F8,212 = 21.612; Pillai = 0.898, p < 0.001) were the main 

drivers of green leaf tissue chemistry. Non-serpentine species had slightly higher green 

leaf nitrogen concentrations and much higher leaf phosphorus concentrations than 

serpentine species. Adults had higher green leaf nitrogen and phosphorus than the 

juvenile species. Arctostaphylos species had the lowest concentrations of green leaf 

nitrogen, whereas all other species were similar. Quercus berberidifolia had the highest 
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green leaf phosphorus concentration (1.85 g kg-1), whereas C. jepsonii had the lowest 

green leaf phosphorus concentration (0.80 g kg-1; Figure 7).  

 

4. Discussion  

4.1 Species response to water and nutrient additions 

The hypothesis that all species would respond positively to increased water and 

nutrients was not supported. Instead, plant performance was often greatest in the low-

water, high-nutrient treatment, and lowest in high-water only treatment. Plants in the low-

water, high-nutrient treatment invested less resources in root biomass and achieved the 

highest RGR and total biomass, contrary to what we might expect under droughted 

conditions (Chapin, 1980). Allocation aboveground, rather than into roots, promotes 

future carbon gain and thus a greater return on investment (Drenovsky and James, 2010), 

which likely supports higher biomass accumulation in this treatment. If biomass is an 

approximate proxy for fitness in these species, our data suggest that these chaparral 

species could respond positively to future nutrient deposition, but only if precipitation 

patterns support dry soil conditions. In contrast, high-water treatments had negative 

impacts on plant performance, particularly under low nutrient conditions and for the 

serpentine species, suggesting that increased precipitation may be a greater threat to plant 

success under future environmental change scenarios than nutrient deposition.  

Compared to other treatments, plants had higher green leaf nitrogen and lower 

green leaf phosphorus in the low water, high nutrient treatment, which could be due to 

the mobility of these nutrients. Nitrogen, which has a high mobility, can easily be taken 

up from the soil, as transpiration in these species was maintained even under droughted 
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conditions (data not shown). In contrast, phosphorus is relatively immobile, thus limiting 

the amount of phosphorus that could be absorbed, especially in low-water conditions 

(Marschner et al., 2012). It is also possible that the low green leaf phosphorus observed in 

the low-water, high-nutrient treatment could be the result of biomass dilution (Jarrell and 

Beverly, 1981), as these plants also had the largest overall biomass. Not only did the 

treatments affect green leaf tissue chemistry but also resorption proficiencies of these 

species. The species given the low-nutrient treatments, particularly the high-water, low-

nutrient treatment, tended to be very proficient resorbers, often exhibiting complete 

resorption (Killingbeck, 1996). However, the species in high nutrient treatments tended to 

resorb less, implying that these species rely less on resorption as a nutrient conservation 

strategy when soil nutrients are high. Because resorption is an energy intensive process 

(Chapin and Kedrowski, 1983), plants exhibiting intermediate or incomplete resorption 

will have more energy available to spend on other processes, such as growth, as was 

observed in all our species.  

 

4.2 Plasticity responses to water and nutrient additions  

The hypothesis that faster growing, non-serpentine species would be more plastic 

in functional traits than the slower growing, serpentine species was supported for all traits 

measured. Higher overall plasticity in fast-growing species is to be expected, as plants 

from higher resource areas are better adapted to take up nutrients when they become 

available (Funk, 2008), unlike slow-growing plants, which tend to have a steady rate of 

uptake regardless of nutrient availability (Chapin, 1980). Species were the most plastic in 

traits related to growth and biomass allocation rather than physiological traits or tissue 
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chemistry. Physiological traits, particularly WUE, had only slight differences in 

plasticity, implying that these traits respond similarly between all species. However, gas 

exchange data were highly variable within species and treatment, which could have 

masked underlying physiological plasticity. Unpublished data collected in 2016 on C. 

cuneatus and C. jepsonii rarely had values of A exceding 20 µmol m-2 s-1, whereas data 

for C. cuneatus almost always exceeded 20 µmol m-2 s-1, except for the high-water, low-

nutrient treatment, suggesting that the values for this species were high. In contrast to 

physiological traits, biomass and RGR were highly plastic, increasing in response to 

nutrient addition and decreasing in response to soil moisture. These responses indicate 

that plasticity, particularly in non-serpentine species, may help these species respond 

positively to nutrient deposition and negativly to any increases in precipitation.  

 

4.3 Effects of phylogeny on trait responses  

The final hypothesis, that congener pairs would respond more similarly to each 

other than other congener species, was supported, especially in the Quercus species. The 

oaks, regardless of origin, responded very similarly to each other for all traits measured in 

the greenhouse experiment as seen in the PCA analysis, suggesting that phylogeny 

influences how these species respond to resource availability. If the oaks share a more 

recent common ancestor than the other congener pairs, they would have had less time for 

trait divergence. However, dated phylogenies on the suite of species studied here is 

needed to investigate this hypothesis. Although each congener pair of Arctostaphylos and 

Cuneatus were similar in the direction of their trait responses, the magnitude of their 

responses between species within a pair differed. For example, the serpentine species of 



27"
"

each pair had slower RGR and lower total biomass, irrespective of treatment, as is 

common among slow-growing species (Aerts and Chapin, 2000). These results are in 

agreement with other findings for traits exhibited by serpentine and non-serpentine 

species growing in the California chaparral, in which congener species behaved similarly 

in resorption proficiency (Drenovsky et al., 2013) and biomass and leaf nutrient 

concentrations (O’Dell et al., 2006).  

 

4.4 Trade-offs in nutrient conservation mechanisms 

Except for the expected trade-off observed between WUE and PNUE (Field et al., 

1983), most resource conservation traits and traits associated with resource acquisition 

were complementary to each other. This result is surprising, as trade-offs between traits 

associated with obtaining resources versus retaining resources are predicted in the 

literature (Aerts, 1999). However, these data suggest that the high growth and biomass 

accumulation associated with the low water, high nutrient treatment was supported by 

complementary RGR and resource conservation traits. Additionally, an expected tradeoff 

between RMR and traits associated with resource retention (Aerts, 1999; Aerts and 

Chapin, 2000) was not observed.  It is possible that under greenhouse conditions, plants 

still experienced sufficient water uptake to maintain plant function, without additional 

investment in root biomass. Alternatively, these data may suggest that investment in roots 

reflects greater need for storage under low resource conditions, as well as supporting 

resource uptake.  

 

4.5 Relation to field trait responses  
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The field trait responses suggest that the greenhouse study may have provided 

more optimal growing conditions than what was observed in the field. At the time of field 

measurements, weather conditions were hot (35° C) and sunny, possibly causing 

significant stress on the plants we measured. The low water potentials observed indicated 

that these plants were at least under a high amount of water stress during this period. The 

stressful conditions observed in the field could account for the higher photosynthetic rates 

observed in the greenhouse compared to the low rates observed in the field, as the 

greenhouse measurements were made when it was 10° C cooler. Whereas field mature 

and immature species varied in their traits by species and age, gas exchange responses 

from all ages and species measured in the field were generally still lower than the 

responses to the same traits measured in the greenhouse. However, previously collected 

field data of senesced leaf nitrogen in the same species (Drenovsky et al., 2013) indicate 

that field individuals were equally proficient at resorbing nitrogen as those grown under 

low nutrient greenhouse conditions, but more proficient than greenhouse grown plants 

under high nutrient conditions. These data suggest that the immature species grown in the 

greenhouse under low nutrient concentrations may have been exposed to similar nutrient 

stress as the adults growing in the field and that age may not be a large driver of 

resorption proficiency in the focal taxa of this study.  

 

4.6 Conclusions 

This study suggests that combined anthropogenic effects of changing precipitation 

patterns and nutrient deposition may have strong impacts on physiological function and 

growth of low resource adapted plants, although trait responses to these stressors may be 
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evolutionarily constrained. Especially in the short-term for immature species, traits may 

be more sensitive to increased soil moisture than to nitrogen deposition. However, non-

serpentine species may exhibit greater trait plasticity and likely be able to respond better 

to anthropogenic environmental stressors by increasing in biomass. However, as urban 

sprawl and nitrogen deposition increase (Bobbink et al., 2010; Fenn et al., 2003, 2010), 

further research will be needed to determine the potential limits of these plastic responses 

and to assess the nutrient loads that these species can tolerate. Additionally, plant 

responses to predicted precipitation scenarios (increased frequency, intensity, or duration) 

must be assessed, particularly in conjunction with increased nutrient pulses. Moreover, 

nitrogen deposition may promote growth of non-native species in the California 

chaparral, potentially increasing invasion success and yielding changes in community 

structure (Allen et al., 1998; Minnich and Dezzani, 1998; Vourlitis, 2017). It is unclear 

how these competitive pressures may influence shrub recruitment and success under 

various scenarios of environmental change. Future research will be crucial to the 

California chaparral and other low-resource ecosystems as anthropogenic environmental 

changes continue to accelerate their impact potential, especially near biodiversity 

hotspots.  
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Figures 
 
 
 
 
 
 
 
 
 

 
Figure 1. A) Photosynthetic rate, B) WUE, C) PNUE, and D) PPUE of the six species 
studied under varying water and nutrient treatments in the greenhouse experiment (n = 1–
7).!
!
!
!
!
!
!
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!
!
Figure 2. A) Total biomass B) root mass ratio, and C) relative growth rate of the six 
species studied under varying water and nutrient treatments in the greenhouse experiment 
(n = 7–10).  
!
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!
Figure'3.!A) Green leaf nitrogen, B) green leaf phosphorus, and C) senesced leaf 
nitrogen concentrations for the six species studied under varying water and nutrient 
treatments in the greenhouse experiment (n = 1–10).!
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Figure 4. PCA of WUE, RMR, SLA, PNUE, PPUE, RGR, and senesced leaf nitrogen for 
species used in the greenhouse experiment (n = 1–5). A. manzanita =     , A. viscida =      , 
C. cuneatus =      , C. jepsonii =      , Q. berberidifolia =     , and Q. durata =       . Low 
water, low nutrients = gray, low water; high nutrients = blue, high water; low nutrients = 
yellow; and high water; high nutrients = white.  
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Figure 5. A) A, B) WUE, C) PNUE, and D) PPUE of the mature and immature species 
sampled at McLaughlin Natural Preserve (n = 10). 
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Figure 6. Water potentials of the mature and immature species sampled at McLaughlin 
Natural Preserve (n = 3–8).  
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!

Figure'7.!A) Green leaf nitrogen and B) phosphorus concentrations of the adult and 
juvenile species sampled at McLaughlin Natural Preserve (n = 9–10).!
!
!


	NUTRIENT CONSERVATION TRAIT RESPONSES OF LOW RESOURCE ADAPTED CHAPARRAL SHRUBS TO INCREASED RESOURCE AVAILABILITY
	Recommended Citation

	Thesis Title Page with Footer Fixed Page Num.pdf

