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ABSTRACT

Aim Although patterns are emerging for macroorganisms, we have limited under-
standing of the factors determining soil microbial community composition and
productivity at large spatial extents. The overall objective of this study was to
discern the drivers of microbial community composition at the extent of biogeo-
graphical provinces and regions. We hypothesized that factors associated with land
use and climate would drive soil microbial community composition and biomass.

Location Great Basin Province, Desert Province and California Floristic Province,
California, USA.

Methods Using phospholipid fatty acid analysis, we compared microbial com-
munities across eight land-use types sampled throughout the State of California,
USA (n = 1117).

Results The main factor driving composition and microbial biomass was land-
use type, especially as related to water availability and disturbance. Dry soils were
more enriched in Gram-negative bacteria and fungi, and wetter soils were more
enriched in Gram-positive, anaerobic and sulphate-reducing bacteria. Microbial
biomass was lowest in ecosystems with the wettest and driest soils. Disturbed soils
had less fungal and more Gram-positive bacterial biomass than wildland soils.
However, some factors known to influence microbial communities, such as soil pH
and specific plant taxa, were not important here.

Main conclusions Distinct microbial communities were associated with land-
use types and disturbance at the regional extent. Overall, soil water availability was
an important determinant of soil microbial community composition. However,
because of the inclusion of managed and irrigated agricultural ecosystems, the
effect of precipitation was not significant. Effects of environmental and manage-
ment factors, such as flooding, tillage and irrigation, suggest that agricultural man-
agement can have larger effects on soil microbial communities than elevation and
precipitation gradients.

Keywords
California, disturbance, microbial biomass, PLFA, soil microbial community,
water.
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optimal conditions for individual taxa along these gradients

(Whittaker, 1956; Curtis, 1959). At very large spatial extents (e.g.

regions, provinces and continents), climatic factors are the

primary drivers of plant communities (Whittaker et al., 2001).

Recent studies have indicated that precipitation gradients and

their direct influence on soil water availability as well as

the interaction between energy (e.g. evapotranspiration) and

INTRODUCTION

How do communities organize and differentiate themselves 
along geographical, climatic and environmental gradients?

Classic studies of plant communities indicate the importance of 
environmental and elevation gradients in driving species com-

position and suggest that communities segregate according to
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precipitation are driving factors structuring global and regional

plant communities (O’Brien, 1998; Kreft & Jetz, 2007). Although

soil microorganisms play important roles in many ecosystem

functions, comparatively less is known about factors influencing

microbial community composition at large spatial extents.

At small extents, biotic interactions alter the soil habitat in

which microbes live and influence microbial composition.

Plants add and remove mineral nutrients from soil environ-

ments, and these rates are species specific. Some researchers have

detected differences among microbial communities based on

plant species composition (e.g. Batten et al., 2006). Food web

interactions among different groups of microorganisms (e.g.

competition and predation), as well as between microorganisms

and higher trophic level organisms, also influence soil commu-

nities (De Deyn et al., 2003; Wardle, 2006).

Abiotic factors such as soil fertility (Bardgett et al., 1999),

substrate availability (Bååth et al., 1995), pH (Bååth et al., 1995),

climate (Steinberger et al., 1999), soil temperature (Zogg et al.,

1997) and moisture, as well as shifts in seasonality (Bardgett

et al., 1999; Steenwerth et al., 2006), have an impact on soil

microbial communities at small extents. For example, fungal-

:bacterial ratios generally decrease with increased soil water

saturation (e.g. Bossio & Scow, 1998), and organic carbon inputs

often select for rapidly growing, heterotrophic microorganisms

(Sylvia et al., 2005). Furthermore, management factors such as

tillage (Calderón et al., 2001) and farming system (Petersen

et al., 1997) also influence microbial community composition.

Thus, at the site level, abiotic and biotic heterogeneity has been

identified as an important driver of soil microbial communities.

Whether these same abiotic and biotic factors are important at

large spatial extents is relatively unknown.

Recent studies suggest that the composition of soil microbial

communities, similarly to communities of macroorganisms,

vary at large spatial extents (e.g. landscapes, regions and conti-

nents) because of environmental heterogeneity in factors such as

soil texture, climate, plant community composition, availability

of labile carbon and soil pH (Steenwerth et al., 2003; McCulley

& Burke, 2004; Fierer & Jackson, 2006; Martiny et al., 2006). In

one study, changes in bacterial composition across sites were

more closely associated with environmental gradients than with

spatial extent; environmentally similar areas were similar in bac-

terial composition, regardless of geographical location (Horner-

Devine et al., 2004). Likewise, when stream-bed bacterial

community structure was compared among three biomes

(eastern deciduous, south-eastern coniferous and tropical ever-

green forests), samples within a biome were more similar in

composition than samples from different biomes that differed in

multiple biological, physical and chemical components (Findlay

et al., 2008).

Anthropogenic disturbance and land use influence microbial

community composition at multiple spatial extents and are

linked closely to soil environmental heterogeneity. Long-term

agricultural management practices alter soil microbial commu-

nity composition, even decades after that management practice

has ceased (Buckley & Schmidt, 2003). Tillage influences mul-

tiple soil properties, including aeration and organic matter

availability (Calderón et al., 2000), physically disrupts fungal

hyphae (Evans & Miller, 1990) and alters microbial community

composition (Calderón et al., 2001).

To address the roles of environmental heterogeneity and dis-

turbance in determining composition at the regional extent, we

compared soil microbial communities from a diverse set of eco-

systems that differed in land use (i.e. land-use types such as

coastal grasslands, inland grasslands, deserts, coniferous forests

and freshwater wetlands, as well as perennial and annual agri-

cultural fields) from California. The scale of the study (i.e. c.

400 km ¥ 600 km) is of medium extent, with a small grain size

(i.e. individual soil samples taken from various field sites). We

included sites from all three major biogeographical provinces in

California (i.e. the California Floristic Province, the Great Basin

Province and the Desert Province). These encompassed a wide

range of land-use types, annual precipitation and elevation, pro-

viding a relatively long disturbance and environmental gradient

(cf. Vetaas & Ferrer-Castán, 2008). We hypothesized that land

use (e.g. disturbance regime, dominant plant species and asso-

ciated soil characteristics) would be the primary driver of

microbial community composition and biomass, given its

strong effect on the soil environment in which microbes exist.

Alternatively, soil microbial community composition and

biomass at large spatial extents (i.e. the major biogeographical

provinces of California) were hypothesized to be driven by cli-

matic gradients (e.g. temperature and precipitation).

METHODS

Description of dataset and soil sampling

A total of 1117 samples from eight land-use types and 17 Cali-

fornia counties were included in the analysis (Table 1, Fig. 1).

These sampling sites represent all three Californian biogeo-

graphical provinces and six of the ten regions within these

provinces (i.e. Northwestern California, Sierra Nevada, Great

Valley, Central Western California, East of Sierra Nevada and

Mojave Desert) (see Appendix S1 in Supporting Information;

sensu Hickman, 1993). Climate varies widely because of differ-

ences in proximity to coastal areas, changes in elevation and

rainshadow effects. For example, because of the maritime effect

coastal areas have cool summers and mild winters; these areas

rarely experience frost or freezing. In contrast, sites in the Great

Valley (the central portion of California) have very hot and dry

summers and cool to moderately cold, wet winters. As elevation

increases in both the Coast Range and the Sierra Nevada,

average temperatures drop. Cold, freezing temperatures are

common during the winter months in the Sierra Nevada. Sites

to the east of the Sierra Nevada experience the rainshadow

effect, receive little precipitation and have large annual and

diurnal variations in temperature. Overall, mean annual pre-

cipitation among sites ranges from approximately 12–135 cm

(http://www.cimis.water.ca.gov/cimis/data.jsp; http://cdec.

water.ca.gov/) (Appendix S2).

Soils were sampled in both agricultural and wildland ecosys-

tems, as well as from a range of soil moisture and disturbance

R. E. Drenovsky et al.

28



Table 1 Description of land-use types, their county of origin, year and season sampled, and number of replicates.

County Land use Notes Year sampled Season sampled Replicates

Butte Coniferous forest Coniferous forest (site 1) 1998 Summer 2

Coniferous forest (site 2) 1998 Summer 2

Colusa Inland grasslands Serpentine soils 2002 Spring 18

Rice fields Periodically flooded 1994 Winter 32

1994 Spring 16

1994 Winter 32

1994 Spring 32

El Dorado Coniferous forest Coniferous forest (site 1) 1998 Summer 1

Coniferous forest (sampled across 16 sites) 2000 Summer 50

Fresno Annual agriculture Cotton fields (site 1) 2000 Autumn 4

2001 Autumn 4

Annual agriculture Cotton fields (site 2) 1995 Autumn 2

Coniferous forest 2003 Autumn 9

Perennial agriculture Almond orchards 2004 Summer 37

Kern Annual agriculture Cotton fields (site 1) 1995 Autumn 8

Annual agriculture Cotton fields (site 2) 2002 Autumn 8

Annual agriculture Cotton fields (site 3) 1995 Autumn 8

Desert Mojave Desert 2001 Spring 36

2002 Summer 6

2002 Winter 6

Perennial agriculture Almond orchards 1995 Autumn 16

Perennial agriculture Fig orchards 1995 Autumn 11

Kings Annual agriculture Cotton fields 2000 Autumn 4

2001 Autumn 4

Perennial agriculture Walnut orchards 1995 Autumn 10

Lake Inland grasslands Serpentine soils 2001 Spring 36

2002 Spring 51

Mendocino Perennial agriculture Vineyards (site 1) 1998 Summer 3

2000 Summer 3

2001 Summer 1

Perennial agriculture Vineyards (site 2) 1998 Summer 3

2000 Summer 3

2001 Summer 3

Perennial agriculture Vineyards (site 3) 1998 Summer 3

2000 Summer 3

2001 Summer 4

Mono Desert Great Basin Desert 2001 Spring 24

Monterey Annual agriculture Dry-farmed hay fields 1998 Spring 7

Annual agriculture Intensively farmed vegetable fields 1998 Spring 5

Inland grasslands Non-serpentine soils 1998 Spring 25

Napa Perennial agriculture Vineyards (site 1) 2003 Summer 58

Perennial agriculture Vineyards (site 2) 1998 Summer 3

2000 Summer 3

2001 Summer 6

Perennial agriculture Vineyards (site 3) 2003 Summer 16

Placer Coniferous forest Coniferous forest (sampled across 9 sites) 2000 Summer 25

Sacramento Freshwater wetland Periodically flooded 2000 Summer 4

2000 Autumn 22

2001 Summer 22

Sonoma Coastal grasslands Non-serpentine soils 2003 Spring 32

Perennial agriculture Vineyards (site 1) 1998 Summer 3

2000 Summer 3

2001 Summer 3

Perennial agriculture Vineyards (site 2) 1998 Summer 3

2000 Summer 3

2001 Summer 3

Global Ecology and Biogeography, 19, 27–39, © 2009 Blackwell Publishing Ltd 29



regimes. Annual and perennial agricultural soils included a

diverse set of crops (Table 1). All agricultural soils were drip or

flood irrigated, except for hay which was rain-fed only. All soils

were sampled from the soil surface down to a depth of

10–15 cm. Moist soils were immediately frozen at -20 °C until

analysis, to prevent changes in microbial community composi-

tion during storage and prior to extraction. Samples from dry

soils (e.g. desert soils and some agricultural soils) were kept

sealed and dry under ambient conditions.

Most soil types were sampled once (e.g. coniferous forests,

most annual agricultural soils and some grassland soils),

whereas other soil types were sampled annually (e.g. grapes and

some grassland soils) or multiple times throughout a growing

season (e.g. rice, tomato, Mojave Desert and freshwater wetland

soils) (Bossio & Scow, 1998; Bossio et al., 1998; Kelley, 2003;

Steenwerth et al., 2003; Drenovsky et al., 2005a,b; Roberts,

2005; Batten et al., 2006; Bossio et al., 2006). This sampling

scheme allowed us to determine the influence of annual and/or

seasonal variation on microbial communities at larger spatial

scales.

Phospholipid fatty acid analysis

Phospholipid fatty acid (PLFA) analysis is a biochemical tech-

nique that exploits differences in cellular membrane composi-

tion between microbial groups to characterize microbial

communities. Although many methods exist to describe micro-

bial communities, PLFA has certain advantages over physiologi-

cally based methods, such as community-level physiological

profiling (CLPP), and DNA fingerprinting methods, such as

denaturing gradient gel electrophoresis and terminal restriction

length polymorphism analysis. PLFA is a relatively rapid and

inexpensive method for describing microbial communities

based on standardized protocols (Pinkart et al., 2002), allowing

for sites to be sampled intensively. PLFA profiles also are very

reproducible, with high precision between replicate samples and

thus reliable sample profile extraction (Drenovsky et al., 2004).

In a literature review of studies comparing CLPP, PLFA and

DNA fingerprinting methods, PLFA had the lowest type-II error

rate (i.e. the lowest rate of failing to detect a difference among

communities where one exists) (Ramsey et al., 2006). Given its

greater statistical power, ease of measurement and ability to

detect changes in community composition, PLFA is well suited

to studies of microbial communities in soil environments.

Overall, PLFA provides three types of information: (1) a bio-

chemical ‘fingerprint’ of the community (the pattern of fatty

acids detected in each sample), (2) an estimate of total microbial

biomass (the summed concentration of all fatty acids detected in

each sample), and (3) biomarkers for selected groups of micro-

organisms. To test whether sample variation between land-use

types was greater than seasonal or annual variation within a

land-use type we included soils that had been sampled repeat-

edly either within a growing season or over multiple years at a

given site in the analysis of community fingerprints.

Whole soil microbial communities were extracted from 8 g of

soil (dry weight, DW) following Bossio & Scow (1998). When

weighing soils for analysis, coarse roots and rocks (> 2 mm)

were excluded. Following initial extraction, solvents of increas-

ing polarity were used to separate the phospholipid fraction

from the neutral lipid and glycolipid fractions using solid phase

extraction columns (0.5 g Si; Supelco, Bellefonte, PA, USA).

The phospholipid fraction then was dried under N2 gas,

Table 1 Continued

County Land use Notes Year sampled Season sampled Replicates

Perennial agriculture Vineyards (site 3) 1998 Summer 3

2000 Summer 3

2001 Summer 3

Perennial agriculture Vineyards (site 4) 1998 Summer 3

2000 Summer 4

Stanislaus Perennial agriculture Almond orchards 1998 Autumn 143

Perennial agriculture Peach orchards 2001 Autumn 41

Yolo Annual agriculture Bean fields 1997 Summer 9

Annual agriculture Corn fields (site 1) 2003 Summer 16

Annual agriculture Corn fields (site 2) 1995 Summer 9

1997 Summer 9

Annual agriculture Safflower fields 1997 Summer 9

Annual agriculture Tomato fields (site 1) 2003 Summer 18

Annual agriculture Tomato fields (site 2) 1995 Spring 49

1995 Summer 24

1997 Summer 12

Yuba Coniferous forest Coniferous forest (site 1) 2001 Spring 4

Coniferous forest Coniferous forest (site 2) 1998 Summer 2

Coniferous forest Coniferous forest (site 3) 2003 Autumn 15

Total number

of replicates

1117

R. E. Drenovsky et al.
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transesterified, and methylated. Following methylation, the

samples were dried once again under N2 gas and redissolved in

hexane containing a known concentration of the internal stan-

dard 19:0. Samples were then analysed by gas chromatography

using bacterial fatty acid standards and MIDI peak identifica-

tion software (Microbial ID, Newark, DE, USA).

Environmental characterization

Where available, the United States Department of Agriculture

(USDA) Natural Resource Conservation Service Soil Surveys

(Soil Survey Division, 2006) were used to determine soil order,

soil texture and pH. Soil survey data were not available for the

two desert soils but they were classified as aridisols. Previous

laboratory analyses of 1:5 soil:water extracts were used to

determine soil pH for these desert soils, and soil texture was

determined by feel. Mean annual precipitation was based on

5–10-year averages from the California Irrigation Man-

agement Information system (CIMIS) and the Department of

Water Resources’ California Data Exchange Center (DWR/

CDEC). (http://www.cimis.water.ca.gov/cimis/data.jsp; http://

cdec.water.ca.gov). Geographical information (latitude, longi-
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Figure 1 Map indicating the location of the 17 Californian counties in which soils were sampled for phospholipid fatty acid (PLFA)
analysis. Land-use types sampled in each county are described in Table 1. Different symbols are used to indicate different crop types
sampled within annual and perennial agriculture. Given the close proximity of fields sampled in Yolo County, symbols for each crop type
are obscured; as indicated in Table 1, two sites were sampled in Yolo County. At these sites, bean, corn, safflower and tomato fields were
sampled. Additionally, the eastern-most coniferous forest symbols in El Dorado and Placer counties represent an average location for
samples taken from 16 and 9 transects, respectively. Similarly, the symbols in Monterey County were taken from 37 sites, representing 5
vegetable fields, 7 hayfields and 25 inland grasslands (see Steenwerth et al., 2003, for a detailed map).
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tude and elevation) was based on information from topographic

maps (http://terraserver-usa.com).

Statistical analyses

Correspondence analysis (CA) was used to compare and visualize

microbial fingerprints among samples (n = 1117) using canoco

for Windows, version 4.5 (Microcomputer Power, Ithaca, NY,

USA). CA is a unimodal technique that simultaneously ordinates

samples and fatty acids; therefore, in the ordination plots,

samples with more similar fingerprints plot more closely together

than samples with less similar fingerprints. Additionally, samples

plotting in similar locations to fatty acids have higher concentra-

tions of those fatty acids and lower concentrations of fatty acids

plotting further from that sample. Sequentially removing lipids

allowed us to determine the influence of rarer lipids on sample

ordination. Very similar ordinations were observed when 48, 45,

40 or 36 lipids were included in the analysis (data not shown). All

reported analyses are based on ordinations including 36 lipids.

Across the dataset, the minimum number of fatty acids detected

per sample was 10; the maximum was 85. In total, three fatty acids

were unique to only one sample in the dataset: 16:1 iso h;

unknown fatty acid 12.112 (an unidentified fatty acid approxi-

mately 12 carbons long); and 9:0 3OH.

To elucidate relationships among microbial communities,

environmental characteristics, land use and biogeographical

location, PLFA samples and their associated descriptive charac-

teristics were analysed using canonical correspondence analysis

(CCA), a direct ordination technique. Samples plotting close to

specific descriptive characteristics are associated with those vari-

ables. Three groups of explanatory variables were used in the

analysis. The first group consisted of environmental variables,

including soil order, soil texture, soil pH class (e.g. slightly acidic,

acidic, etc.), total PLFA, precipitation, number of growing days,

soil temperature regime (i.e. thermic, mesic, frigid) and eleva-

tion. The second group was composed of land management

practices (i.e. annual agriculture,perennial agriculture, tillage,no

tillage, irrigation, flooding, dryland farming). The third group

consisted of spatial coordinates, in which latitudinal and longi-

tudinal coordinates of each site (x and y, respectively) were used

to calculate a cubic trend surface (x, y, x2, xy, y2, x3, x2y, xy2 and y3)

(Legendre, 1990). Variation in microbial communities was par-

titioned among the three explanatory variable groups [environ-

ment (E), management (M) and spatial variables (S)] using

partial regression analysis with CCA (Borcard et al., 1992; Heik-

kinen et al., 2004). Two CCA runs, using the forward selection

option in canoco and the Monte Carlo permutation test (with

9999 permutations), were performed for each of the three pre-

dictor groups to exclude variables not contributing significantly

to the explained variation (P < 0.05) (Borcard et al., 1992). With

the forward selection option in canoco, partial Monte Carlo

permutation tests were used to determine the marginal and

conditional effects of predictor variables on the ordination (Lepš

& Šmilauer, 2003). Some samples from the CA (a subset of the

coniferous forest and annual agriculture samples) were omitted

because of incomplete descriptive information (thus n = 1028).

Continuous variables were plotted as vectors, and nominal vari-

ables were plotted as centroids.

Variation partitioning resulted in eight fractions: pure effect

of environment (a); management (b); or spatial components (c);

joint effects of environment and management (d); environment

and spatial components (e); or management and spatial com-

ponents (f); the three groups of explanatory variables (g); and

unexplained variation (h). A complete explanation of these par-

titioning analyses can be found in Heikkinen et al. (2004).

Descriptive statistics (means � SE) for total PLFA and biom-

arker composition were calculated (sas version 8; SAS Institute,

Cary, NY, USA). Given the structure of the data after pooling

multiple studies, descriptive statistics were the most conserva-

tive means of data presentation. For those sites sampled multiple

times in the same year (e.g. rice fields, tomato fields, freshwater

wetlands and the Mojave Desert site), only one sampling time,

which represented peak microbial biomass at that location, was

included in the analysis. For those sites sampled in multiple

years (e.g. some grape fields, rice fields, tomato fields, corn fields,

inland grasslands, freshwater wetlands and the Mojave Desert

site), one year was randomly selected to include in the analysis.

RESULTS

Soil microbial community variation among different
ecosystem and land-use types

Soils from dry ecosystems (e.g. deserts) had very different

microbial communities than soils from wetter ecosystems (e.g.

rice fields and freshwater wetland soils) (Fig. 2a). These differ-

ences can be observed in the separation of the different land-use

types along the first CA axis, which describes 27.2% of the

variation in fatty acid composition. Land-use types along the left

side of the first axis were more enriched in monounsaturated

fatty acids (i.e. Gram-negative organisms; Wilkinson (1988) and

18:2w6,9c (i.e. fungi; White et al., 1980) (Fig. 2b). Two fatty acids

considered to be indicative of fungi, 18:1w9c and 18:3w6,9,12c

(Nordby et al., 1981; Kourtev et al., 2003), also plotted along the

left side of the first axis. In contrast, most saturated fatty acids (i.e.

common in many organisms), branched fatty acids (i.e. Gram-

positive organisms; O’Leary & Wilkinson, 1988), and 10Me

branched fatty acids (i.e. actinomycetes; Kroppenstedt, 1985)

plotted to the right along the first axis.

The second axis, which described 21.3% of the variation,

reflects a disturbance gradient, with wildland areas tending to

plot lower along this axis than agricultural areas (Fig. 2a). Peren-

nial agriculture was positioned between annual agriculture and

wildland areas. Fungal fatty acids were associated with samples

from less disturbed areas (Fig. 2b). In contrast, most branched

fatty acids plotted high along the second axis and were associ-

ated with more disturbed areas.

Axes 3 and 4 described an additional 12.5% and 6.6% of the

variation in the data, respectively. Plotting the first three axes

produced an ordination very similar to that of the first two axes

(data not shown).

R. E. Drenovsky et al.
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Inland grasslands were indistinguishable from one another

(Fig. 2a), despite being sampled in two different biogeographical

regions on two very different types of soil (serpentine versus

non-serpentine). Coastal grasslands were more similar to conif-

erous forests than to inland grasslands. Although all desert

samples plotted along the left side of the first axis, the two

sampling locations were separated from one another along the

second axis. The upper sample cluster included those from the

Great Basin Desert, whereas the lower sample cluster included

those from the Mojave Desert.

Rice field soils, despite being sampled throughout a single

growing season, were very similar to one another, forming a

tight cluster of points. Similarly, in those cases in which annual

agriculture, perennial agriculture and grasslands had been

sampled throughout a growing season or over multiple years,

microbial communities showed higher fidelity to land-use type

than to season or sampling year. Freshwater wetland soils were

the most variable in composition, but this variation was associ-

ated with neither seasonal variation nor vegetation type.

Variation partitioning

Forward selection of the three groups of explanatory variables

indicated that the microbial community was significantly

related to the following variables (P < 0.002): (1) environment –

soil texture (i.e. clay loam, loamy sand, sand, silty loam, loam,

sandy loam, silty clay loam and gravelly loam), soil pH class (i.e.

very strongly acid and slightly acid), soil type (i.e. aridisol,

entisol, mollisol, vertisol and histosol), elevation, annual pre-

cipitation, climate zone, number of growing days, total PLFA

and mesic soil temperature regime; (2) management – perennial

agriculture, annual agriculture, irrigation, flooding, and tillage;

and (3) location – spatial components of the cubic equation in

the trend surface analysis (x, y, x3 and y3). Together, pure and

joint effects of environment, management and spatial variables

captured 66.7% of the total variation, respectively (Fig. 3).

When this variation was decomposed, the largest fraction was

accounted for by the environment (a + d + e + g: 60.9%), which

included a strong overlap between environment and manage-

ment (d + g: 29.4%). Without considering the variation

explained by all three components (g), the joint effect of man-

agement and environment alone explained a greater percentage

of the variation (d: 17.7%) than the remaining variance

explained by spatial components (c + e + f: 7.7%) or manage-

Figure 2 Ordination biplot of correspondence analysis (CA)
results of all samples (a) and the 36 fatty acids included in the
ordination (b) (n = 1117). Following ordination, ellipses were
drawn around land-use types to aid in interpretation. Sum 7
indicates an unresolved peak potentially including the following
fatty acids: 18:1w7c; 18:1w9t; and 18:1w12t. Likewise, Sum 9
indicates an unresolved peak potentially including the following
fatty acids: unknown 18.846 (a fatty acid approximately 18
carbons long); unknown 18.858 (a fatty acid approximately 18
carbons long); and 19:0cy w10c. Key: deserts, pink; coastal
grasslands, grey; inland grasslands, yellow; coniferous forests, blue;
perennial agriculture, black; annual agriculture, white; rice fields,
red; freshwater wetlands, green.

Figure 3 Variance partitioning of environmental, management
and spatial components. Partitions are labelled a to g.
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ment alone (b: 2.0%). This demonstrates that the microbial

communities structured themselves largely in terms of environ-

ment followed by management practices but not with respect to

any spatial components (Fig. 3).

Relationships among soil properties, microbial
communities and land use

As observed in the CA (see previous section ‘Soil microbial

community variation among ecosystem and land-use types’),

the CCA reflects similar associations among microbial commu-

nities according to land-use type, although these trends are rep-

resented by different axes in the CCA biplot (Fig. 4a,b). Soil

water regime (i.e. flooded versus dryland or rain-fed sites), agri-

cultural type (perennial versus annual agriculture) and the asso-

ciated management practices (i.e. irrigation and tillage) were

associated with the first axis, thus explaining the distribution of

microbial communities along this axis. Soil type (i.e. vertisol

versus histosol) was important in distinguishing differences

between flooded soil microbial communities (i.e. rice soils

versus freshwater wetland soils) along the second axis.

Soil pH was not a major driver of microbial community com-

position. Most pH classes were not significant, and the two that

were significant (slightly acidic soils and very strongly acidic

soils) plotted near the origin, indicating they were not a major

driver of community composition. Elevation also plotted near

the origin and thus did not have a strong effect on structuring

microbial communities.

Biomass and microbial group composition

Mean microbial biomass, based on total PLFA, varied 3.6-fold

across land-use types (Fig. 5a). Total PLFA varied up to 166-fold

(i.e. the highest total PLFA sample versus the lowest total PLFA

sample). Lowest total PLFA was observed for one of the desert

samples (c. 1.3 nmol g-1 soil DW), and highest total PLFA

was observed for one of the almond orchard samples (c.

210.9 nmol g-1 soil DW). Grasslands (both inland and coastal)

had higher microbial biomass than all other land-use types.

Microbial biomass was lowest in rice fields and also tended to be

low in freshwater wetland and desert soils. Coniferous forests,

perennial agriculture and annual agriculture had intermediate

values.

Perennial agriculture and freshwater wetland soils had the

highest proportions of saturated fatty acids, which are present in

many microbial groups. Deserts, with the lowest proportion of

saturated fatty acids, had 1.7-fold fewer saturated fatty acids

than freshwater wetland samples (Fig. 5b). In contrast, deserts

had the highest proportions of monounsaturated fatty acids

(indicative of Gram-negative organisms); this proportion was

4.7-fold greater than that observed in freshwater wetlands,

which had the lowest proportions of this biomarker (Fig. 5c).

Branched fatty acids (indicative of Gram-positive organisms)

displayed an opposite trend, with freshwater wetlands having the

greatest proportions and deserts having the lowest (Fig. 5d).

Overall, there was a 2.3-fold difference in the proportion of

branched fatty acids across all land-use types. Freshwater

wetland soils also had the highest proportions of 10Me fatty

acids, having 3.3-fold greater proportions of 10Me branched

fatty acids than deserts, which had the lowest proportions

(Fig. 5e).

Biomarker interpretation, especially for 10Me branched fatty

acids, can depend on environmental conditions. In well-drained

soils, 10Me fatty acids are assumed to be associated with actino-

mycetes (Kroppenstedt, 1985). In contrast, in wet soils (e.g. rice

fields and freshwater wetlands) 10Me fatty acids also are preva-

Figure 4 Canonical correspondence analysis (CCA) biplot of
all samples (a) and the nominal and continuous descriptive charac-
teristics (b), in which spatial components were run as covariates
and environmental and management variables constrained the
ordination (n = 1028). Only those descriptive characteristics
deemed significant by the Monte Carlo permutation test were
included in this ordination plot. Descriptive characteristics plotting
within the ellipse near the origin include: very strongly acidic;
slightly acidic; precipitation; elevation; perennial agriculture; total
phospholipid fatty acid (PLFA); sand; loamy sand; gravelly loam;
loam; mollisol; aridisol; climate zone; and growing days. Key:
deserts, pink; coastal grasslands, grey; inland grasslands, yellow;
coniferous forests, blue; perennial agriculture, black; annual agri-
culture, white; rice fields, red; freshwater wetlands, green.
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lent but in this case are dominated by 10Me16:0 which is pri-

marily found in the sulphate-reducing Desulfobacter bacteria

(Dowling et al., 1986). Overall, perennial agriculture and conif-

erous forest soils had the highest proportions of the fungal

marker, 18:2w6,9c, and rice fields and freshwater wetland soils

had the lowest proportions of 18:2w6,9c (Fig. 5f). Across land-

use types, the proportion of fungal fatty acids varied 8.4-fold.

PLFA biomarkers can also be used to interpret levels of

anaerobic and nutritional stress between sites or samples com-

paring the ratio of cyclopropyl branched fatty acid to its precur-

sor (Kieft et al., 1997). The ratio of 17cy:precursor varied 7.7-

fold across land-use types, with highest values detected in

freshwater wetland soils and the lowest values observed in desert

soils (Fig. 5g). Rice fields had very high values of 19cy:precursor;

their values were 186-fold higher than in desert soils, which had

the lowest 19cy:precursor ratios (Fig. 5h). Excluding rice field

soils, 19cy:precursor varied 5.6-fold among the other seven

land-use types.

DISCUSSION

Influence of land use, disturbance and resource
gradients

Land-use type and level of disturbance are important factors for

the composition and structure of microbial communities across

the State of California. Multivariate analysis and variance parti-

tioning show that PLFA fingerprints from irrigated and/or

flooded sites are typically associated with agricultural manage-

ment practices such as tillage. Grasslands, forests, deserts and

perennial agriculture have microbial communities that are dis-

tinctly different from those in highly managed soils. Local

environment and the joint effects of local environment and

management have more influence on microbial communities

than spatial location.

We suggest that the land-use gradient is driven to some extent

by water availability. Determinants of water availability in our

Figure 5 (a)–(h) Biomass (Total PLFA)
and biomarker values for all land-use
types. Biomarkers represent selected
groups of microorganisms: Saturates,
common in many bacteria;
Monosaturates, Gram (-) bacteria;
Branched, Gram (+) bacteria; 10Me,
actinomycetes or sulfate-reducing
bacteria (see Results). The ratios
17cy:precursor and 19cy:precursor
indicate physiological stress. Note that
the scaling of the axes is not the same
in all panels. Data are means � SE
(n = 32–358).
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study included both natural and anthropogenic inputs: natural

climatic variation in precipitation (e.g. deserts); irrigation (e.g.

perennial and annual agriculture); and natural and managed

flooding regimes (e.g. freshwater wetlands and rice fields). In the

CA ordination, samples from the driest sites, the deserts, plotted

furthest to the left along the first axis, and samples from flooded

sites (rice fields and freshwater wetlands) plotted furthest to the

right along the first axis (Fig. 2). As soils become saturated,

oxygen availability decreases, changing soil redox potential and

creating an environment favourable for facultative or obligate

anaerobic bacteria. Microbial communities are resource-limited

in dry soils, in part because of low availability of labile carbon

(Sylvia et al., 2005). Decreased proportions of fungal and

Gram-negative bacterial fatty acids and increased proportions of

Gram-positive, sulphate-reducing, anaerobic and general bacte-

rial fatty acids were associated with ecosystems with higher

water availability. Similarly, in a landscape-level comparison of

California salt marsh sediments, soil moisture saturation was the

most important factor structuring microbial communities, with

monounsaturated:saturated fatty acid ratios and proportions

of fungal fatty acids decreasing as soil saturation increased

(Córdova-Kreylos et al., 2006).

Increases in cyclopropyl:monoenoic fatty acid ratios have

been associated with anaerobic conditions and nutrient stress

(Kieft et al., 1997). Freshwater wetland and rice field microbial

communities exhibited high ratios for cy17:precursor and

cy19:precursor, respectively, supporting the idea that anaerobic

conditions in these flooded environments created physiological

stress for soil microorganisms. Furthermore, the different

responses of these two markers among land-use types (e.g.

cy17:precursor is high while cy19:precursor is low for freshwater

wetland soils) suggest that the suite of conditions in each land-

use type favours not only different compositions but also dis-

tinct physiological responses in the soil microbial community.

One common aspect of annual cropping systems is tillage, a

physical disturbance that influences soil physical, chemical and

biological properties. In the short term, tillage: breaks down

water-stable aggregates, exposing previously protected soil

organic matter (Calderón et al., 2000); leads to increased soil

CO2 efflux, N mineralization and denitrification (Jackson et al.,

2003); and causes changes in microbial community composi-

tion, probably because of increased environmental stress

(Calderón et al., 2000, 2001). Fresh residues and fertilizer are

often incorporated during tillage, providing labile substrates for

soil microorganisms that are quickly utilized (Jackson et al.,

2003). In the long-term, repeated tillage decreases soil organic

matter, reduces N availability and disrupts soil structure (Lal,

2002). These changes in soil properties can have lasting effects

on soil microbial communities. For example, microbial commu-

nities in historically tilled soils in Michigan were more similar to

currently tilled soils than nearby wildland areas, even many

years after tillage ceased (Buckley & Schmidt, 2003). These

changes in the soil microbes’ physical environment related to

management practices may partly explain why environment and

management factors alone described 47.3% of the variation in

the CCA ordination (see Fig. 3, a + b + d + g).

Most samples from wildland habitats (e.g. coniferous forests,

coastal grasslands, inland grasslands and some desert soils)

plotted separately from agricultural samples. Disturbance was

also a major factor distinguishing grassland and agricultural soil

microbial communities in the Central Coast of California

(Steenwerth et al., 2003). Factors that were important in distin-

guishing microbial communities in intensively managed annual

agricultural soils from grassland soils include herbicide applica-

tion, tillage, irrigation, fertilization and increases in soil pH

associated with liming (Steenwerth et al., 2003).

Overall, the ordination of desert soils was driven by soil water

availability. However, within this land use, soils from the Great

Basin Desert and Mojave Desert separated from one another

along the second axis. There are multiple potential reasons for

this differentiation, including differences in disturbance

regimes, number of growing days, and above-ground plant

communities. Unlike the Mojave Desert soils, we know that

some of the Great Basin soils are regularly subjected to signifi-

cant sand deposition (Brown, 1995), and this entire site is grazed

on a semi-annual basis (R. E. Drenovsky, pers. comm.).

However, further research is required to determine whether dis-

turbance or other factors drive differences in the microbial com-

munity between these soils.

For freshwater wetland soils there were large variations in

microbial communities. Some of these soils are drained every

year and planted with crops, whereas others are permanently

flooded and planted with native species (for a description of

sites see Bossio et al., 2006). Unlike what was observed for other

land-use types, the composition of the freshwater wetland

samples from intensively managed agricultural areas were

similar to communities in undisturbed wildland soils. It is

unclear why the freshwater wetland soils were less influenced by

disturbance regimes than other soils or why they were the most

variable in composition, overall.

Disturbed soils (e.g. annual agriculture) tended to have

higher proportions of Gram-positive biomarkers and lower pro-

portions of fungal biomarkers. The ability of Gram-positive

organisms to sporulate may allow them to withstand tillage or

other anthropogenic disturbance. Conventionally tilled wheat

fields in Washington had higher proportions of Gram-positive

bacteria compared with paired no-till wheat fields (Kennedy &

Schillinger, 2006). Similarly, Gram-positive bacteria were more

closely associated with more intensively farmed agricultural

fields in a survey of six North Carolina agroecosystems (Zhang

et al., 2005). In contrast, fungi can be very sensitive to distur-

bance, and their abundance frequently decreases in response to

tillage (Zhang et al., 2005; but see Calderón et al., 2000, 2001).

Effects of plant species in croplands

Annual agriculture samples clustered together despite the differ-

ent crops that they represented (e.g. tomatoes, corn, cotton and

broccoli, among others) and a similar pattern was observed in

perennial agriculture samples (e.g. peaches, figs, walnuts, grapes

and almonds). Given that these plants are grown in monocul-

tures, a clear effect of dominant plant type on microbial com-
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munity composition should be evident. This was not the case,

however, as microbial community composition was more

related to differences in land use (e.g. tillage and irrigation

regimes) than plant type, despite large variations in soil texture,

soil order and soil pH. Comparable results were observed in

studies of Michigan agricultural fields, with similar microbial

rRNA patterns observed in areas planted with different crops

(Buckley & Schmidt, 2003). Likewise, catabolic response pat-

terns of soil microbial communities sampled throughout New

Zealand were more strongly influenced by disturbance regime

(e.g. pasture, indigenous forest or plantation Pinus forest) than

by geographical location, soil properties or plant species

(Stevenson et al., 2004).

CONCLUSIONS

We demonstrate that, at this regional extent, environmental

factors and management practices strongly influenced the com-

position of microbial communities. Factors commonly associ-

ated with the geographical distribution of macroorganisms (e.g.

patterns in elevation, temperature class and precipitation) did

not show a strong relationship with the distribution of micro-

bial communities. Likewise, spatial components, which may

serve as a proxy for underlying effects of precipitation and

temperature for long gradients, did not influence microbial

community composition. Instead, factors such as soil water

availability and disturbance were far more important. Soil water

availability appears to be a better indicator of microbial com-

munity composition than precipitation, as it incorporates both

anthropogenic water inputs and precipitation. Taken together,

these findings suggest that soil microbial communities were

divorced from factors influencing geographical distributions of

other organisms because of the inclusion of managed agricul-

tural systems in this study. Surprisingly, seasonal and annual

variation had little impact on structuring these microbial com-

munities. Despite being sampled in different seasons and differ-

ent years, microbial communities sampled on the same land-use

type were relatively similar. With the increasing focus on how

microbial community function varies across landscapes, regions

and continents (Green et al., 2008), the next step is to elucidate

linkages between microbial function and composition in order

to better understand how distribution patterns are ultimately

related to ecological processes.
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