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RESEARCH ARTICLE
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Abstract

For undergraduate students, involvement in authentic research represents scholarship that

is consistent with disciplinary quality standards and provides an integrative learning experi-

ence. In conjunction with performing research, the communication of the results via presenta-

tions or publications is a measure of the level of scientific engagement. The empirical study

presented here uses generalized linear mixed models with hierarchical bootstrapping to

examine the factors that impact the means of dissemination of undergraduate research

results. Focusing on the research experiences in physics and chemistry of undergraduates

at four Primarily Undergraduate Institutions (PUIs) from 2004–2013, statistical analysis indi-

cates that the gender of the student does not impact the number and type of research prod-

ucts. However, in chemistry, the rank of the faculty advisor and the venue of the presentation

do impact the number of research products by undergraduate student, whereas in physics,

gender match between student and advisor has an effect on the number of undergraduate

research products. This study provides a baseline for future studies of discipline-based biblio-

metrics and factors that affect the number of research products of undergraduate students.

Introduction

The importance of high impact educational practices to strengthen students’ undergraduate

experiences has been validated by longitudinal studies, and practices like mentored research

are an integral part of the future of undergraduate education [1]. In particular, programs for

engaging undergraduate students in STEM (Science, Technology, Engineering, and Mathe-

matics) disciplines, which appear to be particularly important for retaining female students,

abound at academic institutions across the country [2–4]. The quantitative and qualitative
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value of undergraduate research as a high impact educational practice, regardless of the type of

institution (liberal arts college, PUI, research-intensive, etc.), has been recently and extensively

examined in the literature [5–15]. Ranging from retention programs, career promotion pro-

grams, research apprenticeships, and research-based learning [5], undergraduate research

experiences are an important component in preparing scientists in the STEM fields. According

to these studies, undergraduate research deepens the undergraduate experience, is a key indi-

cator for student success, is a measure of a quality program, and is an excellent training ground

for early scientists.

As a training platform for future scientists, research experiences can contribute to growth

in all areas identified as needs of the STEM workforce for the coming century: oral, written,

and computer communication; self-motivation; passion and enthusiasm; technical and intel-

lectual abilities; problem solving and critical thinking abilities; and the pursuit of further edu-

cation or training [15–22]. While working on a research project can strengthen these much

needed skills, undergraduate research experiences are not without some identified weaknesses,

especially in the dissemination of research results [5]. Students should be given the opportu-

nity to present their results to benefit most from the research experience. In one study, under-

graduates reported that the single greatest benefit of attending conferences was having the

opportunity to present their research, and they reported their experience as positive or “life

changing” [23]. However, in a study conducted by Seymoure et al, only a few students pre-

sented at a regional or national scientific meeting (7% presented a poster, 9% presented a

paper), expected to have their results incorporated into a professional publication (7% had

done so, 21% expected to do so), or utilized their undergraduate research as the basis for an

undergraduate thesis (7%) [5]. A study of the perceptions of undergraduates who presented at

a national meeting showed this was a positive professional development experience [23], but

the results were limited to undergraduates who presented at two national meetings. A more

detailed analysis that includes all kinds of undergraduate research products is still needed.

Considering the positive impact on students of disseminating their research results, the

study reported here, conducted at four Primarily Undergraduate Institutions (PUIs) over a ten-

year period from 2004–2013, examines what factors impact the number of students who present

their work at local, regional, or national venues in poster or oral format, or have contributed to

a peer-reviewed publication. The factors that were considered to possibly impact whether or

not a student presented their results include discipline (chemistry or physics), faculty rank

(assistant, associate, full professor), venue location (local, regional, national), presentation type

(poster, paper, oral), self-identified gender of faculty member, and self-identified gender of

research student. Gender was specifically included as a potential factor with the goal that exami-

nation of any gender difference at the undergraduate research experience in our PUIs might

shed a light on gender differences seen at higher levels in chemistry and physics or other STEM

disciplines. Pezzoni et al published a study showing some gender effects in the publication out-

put of graduate students at a research-intensive university [24]. In particular, they find that gen-

der pairing matters: male students working with female advisors publish 10.0% more than male

students working with male advisors; women students working with male advisors publish

8.5% less. An equivalent analysis for publication trends of undergraduate students is lacking, as

well as metrics to assess the impact of undergraduate research [25]. The focus of this study was

on PUIs, which are important contributors in STEM workforce education [3]. Students from

private non-doctoral institutions like those in this study tend to have a high rate of undergradu-

ate persistence in STEM fields, obtain their STEM degrees in four years or less, and account for

about 25% of PhD candidates in the physical sciences [3]. There are a limited number of studies

that focus on the research experiences of STEM students at PUIs. Therefore the authors, all fac-

ulty at PUIs, collected and analyzed data from those institutions.

Factors affecting chemistry and physics student research products at PUI’s
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While not news, there have been continued reports of “leaky pipelines,” “gender filters,”

and related challenges [26–32]. Hazari and Potvin [33] point out the need for a deeper under-

standing of the factors that influence the decision of students to persevere in a science (physics)

career. Of the students who took the AP tests in 2005, which may be an indicator of interest in

these areas of study, women comprised 46.5% of those taking the chemistry test and 35.3% of

those taking the physics test [34]. Nine years later in 2014, the percentage of PhDs awarded to

women in chemistry was 39.4%, and the percentage of PhDs awarded to women in physics

was 18.7% [35]. While this data does not indicate why or where the percentage decreased, it is

clear that there is a downward trend. Finding ways to mitigate this attrition is important as the

percentage of women interested in chemistry and physics is increasing; in 2016, 49.6% of

chemistry AP (Advanced Placement) test takers were female, and 37.3% physics AP test takers

were women [36]. Undergraduate research has been seen as one possible tool to improve

retention of female STEM students [5, 8, 12, 17]. A recent comparison of thesis production

and peer-reviewed publication between a few institutions has been reported [37], and this sin-

gle study suggests that women are, for the most part, as engaged as their male counterparts by

these measures.

The impact of gender bias in STEM disciplines has been gaining broader public awareness

[38]. Women who are successful in STEM disciplines seem to be as successful as their male

counterparts [39, 40], but there is clearly still vigorous debate on this issue [41]. A longitudinal

study has indicated a gender difference in self-confidence of STEM professionals [32, 42].

Other studies have shown that gender differences are measurable in academic literature

authorship across a wide range of disciplines [43–45]. Despite awareness initiatives, a recent

study found that men failed to acknowledge the existence of gender differences or bias, despite

evidence indicating that such differences or bias exists [46]. Several groups have found that

diverse role models have a positive impact on women in STEM disciplines [47–49]. Because

faculty research mentors are role models, this study examines the impact of faculty rank and

faculty-student gender match on research productivity of both male and female undergraduate

research students.

Motivation

The two fundamental issues motivating this inquiry are that undergraduate research experi-

ences are of great value for students’ education and career development and that the dissemi-

nation of research is an integral part of the research process. Offering students opportunities

for the dissemination of their research in a variety of venues completes the research cycle, pro-

viding students a deeper understanding of the research process as well as helping the develop-

ment of their communication skills [50]. As mentioned earlier, a number of studies have

shown that students benefit from engaging in undergraduate research. However, a detailed

analysis of the factors influencing the dissemination of their research results is lacking. To

account for the paucity of data in this area, this study presents an evaluation of ten years of

physics and chemistry undergraduate research at four PUIs investigating the factors that influ-

ence the dissemination of undergraduate research in the form of posters, oral presentations,

and papers. Such factors include faculty rank, faculty discipline, and gender of both faculty

and student researchers.

Methods

Participants

The authors of this study are part of an NSF (National Science Foundation) ADVANCE Net-

work, which aims to increase participation and advancement of women in the academic

Factors affecting chemistry and physics student research products at PUI’s
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STEM fields. Our team of researchers focused on comparing the two STEM disciplines of

chemistry and physics, because both are experimental sciences that offer many opportunities

for undergraduate students to participate in research projects. The one-on-one approach

where students are integrated into ongoing experimental, theoretical, or computational

research projects is similar in these two STEM fields. Ten years of data about undergraduate

research in the fields of physics and chemistry from four different PUI’s across the United

States were collected with the intention that analysis of these current data would provide

insight into what factors impact the productivity of undergraduate research students.

The universities involved in this study are private and, with one exception, Catholic institu-

tions, each enrolling between 1600 and 4000 undergraduates in their liberal arts colleges.

Undergraduates are mostly traditional students, enrolling in college right after their high

school graduation. Bachelor of Science degrees are the highest degrees offered in both Physics

and Chemistry at each institution, excepting one university, which has a Master’s program in

Physics. All four institutions have high faculty teaching loads along with the expectation that

tenure-track and tenured faculty engage in research and involve undergraduates in their

research efforts.

At each institution, undergraduate research plays an important role in the college experi-

ence and is made available to interested students both during the academic year and the sum-

mer. During the investigated timeframe, between 30% and nearly 100% of graduating

chemistry or physics students at each of these institutions participated in undergraduate

research in physics and chemistry. Depending on the institution, students obtain a faculty

research advisor by either directly interacting with a faculty member whose research interests

the student or by submitting an application to the STEM department or a committee, who

assigns the student to a faculty mentor. Effort is made by every faculty member involved in

research to accommodate interested students; at some institutions, junior and senior students

receive preference if there are not enough positions. Depending on the institution, student

research may be taken for credit—for example, in the form of an upper-level research methods

course—but physics and chemistry students are not required to complete a research project to

graduate, as is the case at some institutions. Typically, the research products in this study (pre-

sentations, posters, papers) require students to work on their research project for more than

one semester.

Data collection

This study examines undergraduate research products generated over a period of 10 years

(2004–2013) at each of the four institutions. During the time frame, 59 faculty research advi-

sors worked with a total of 548 research students (Table 1). Most of the research students were

chemistry or physics majors, but some students were from other departments. All student

researchers were included regardless of their academic major, because the research domain of

the advisor is the most indicative variable of the type of research conducted. The following

data were collected for each research product: gender of student, type of research product

(poster presentation, oral presentation, institutional article, peer-reviewed article), type of

venue (on-campus, local, regional or national venue), gender of advisor, and academic rank of

advisor. In the dataset, each student was assigned an individual code and each of his or her

research products were identified separately. For example, a peer-reviewed paper with three

student co-authors would count as a research product for each of the three students. Any or all

of those students may also have poster and/or oral presentations.

The data were collected via a census of the faculty, through records maintained by depart-

ments and institutions, and a search of online publication databases. Publications and

Factors affecting chemistry and physics student research products at PUI’s
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presentations with undergraduates are part of faculty evaluation, and as such, appear on Cur-

ricula Vitae (CVs), in institutional archives of scholarly events and faculty publications, and in

departmental or honor’s program databases of student research participants and their presen-

tations. Each institution maintains records of undergraduate research products in different

ways. By collecting and comparing the data from multiple sources, as complete a list as possible

was generated. As each institution is small, this was a manageable task. Any unclear data points

were clarified with faculty advisors. Data from faculty who were not active in research or

whose authorship of research products was not available are not part of this study. Addition-

ally, the data collection process did not control for student intention to pursue professional or

graduate school or a job after college graduation. The data collection process did not account

for a student’s skill level or for the interplay of student and faculty self-efficacy and attitudes

that may impact research productivity.

Some of the research products in this study (for example, presentations at regional or

national meetings) require travel. Travel opportunities are made available to research students

with no regard for gender. There are no predetermined (or even encouraged) gender quotas

for travel set by the departments or the universities. The number of students traveling depends

on available funding, quality of the students’ research projects, and, in some cases, on the avail-

ability of accompanying faculty members.

Data analysis

For this study, the data were combined from all participating institutions and were split by

teaching discipline of the research mentor (chemistry or physics). The data were not subdi-

vided further because the female population linked to physics for both professors and students

at the four institutions was small and could potentially identify individual faculty and students.

The data were analyzed with descriptive statistics followed by a series of Generalized Linear

Mixed Models (GLMM) with bootstrapping. While the descriptive statistics give a basic under-

standing of the sample data, there are two reasons to look for a more appropriate statistical

model to understand patterns that influence the distribution of undergraduate research prod-

ucts. One reason is to statistically identify the significant variables affecting the research prod-

ucts of undergraduates in PUIs and the other is to solve the issue of the small sample size in

the current dataset. As described below in detail, Generalized Linear Mixed Models were used

to identify the variables that impact the undergraduate research products and bootstrapping

was used to overcome the small sample size. The results of the descriptive statistics will be pre-

sented first followed by an explanation of the GLMM methods and the results of that analysis.

Table 1. Research participants and research products for 2004–2013 “Students” accounts for each individual reported as an author on a research product, “Advi-

sors” accounts for each faculty member listed as an author. “Student Research Products” accounts for authorship credit of a research product (institutional paper, oral

presentation, poster presentation, and peer-reviewed article). Gender distribution of faculty advisors also shown.

Student Authors Student Research products Advisors

N Percentage N Percentage N Percentage

Chemistry

Female 213 55% 556 54% 10 24%

Male 175 45% 469 46% 31 76%

Physics

Female 53 33% 171 36% 5 28%

Male 107 67% 301 64% 13 72%

Total 548 1497 59

https://doi.org/10.1371/journal.pone.0196338.t001

Factors affecting chemistry and physics student research products at PUI’s
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Results

Overview of collected data

Research product patterns by student gender. From 2004 to 2013, 548 undergraduate

students at the four PUI’s authored research 1497 products in chemistry and physics. Table 1

shows that gender distribution of student authors (individuals reported as authors on any

research product) and research products (as explained above, one individual can have multiple

research products) follow the same pattern within each discipline. In chemistry, 55% of the

students who authored a research product are females and 54% of the research products have a

female author. In physics, 33% of the student authors are females and 36% of the research

products have a female author. The 3% difference between authors and research products in

physics is explained by outliers in the distribution of research products (see S2 Fig in the SI

(supplementary information)). Because the pool of female students conducting research in

physics is the smallest in our sample, outliers carry a stronger weight and thus have a stronger

effect in the calculation of the percentages. Overall, female students author a research product

at the same relative proportion as male students, with a median of two research products per

student. (See S1 Table)

As a point of reference, national statistics of graduates for 2011–12 at postsecondary institu-

tions, with no distinction between PUIs and research-intensive universities for the aggregated

data, indicate that 48% of total graduates in chemistry are female and 19% of total graduates in

physics are female [51]. While these percentages do not correspond to research involvement,

they provide a national context for this study in which only research activity at PUIs is exam-

ined. The percentage of female undergraduate researchers involved in undergraduate research

observed here (55% of the chemistry researchers and 33% of the physics researchers are

female) is higher than the national statistics for total graduates [35].

Distribution of research products. The 548 undergraduate students involved in research

authored 1497 research products, consisting of poster presentations, oral presentations, and

peer-reviewed publications (Table 2).

In undergraduate research at the institutions involved in this study, poster presentations

are the most common research products in both disciplines (chemistry: 674 posters; physics:

197 posters, see Table 2) for both male and female students. A poster in undergraduate

research features, in many cases, several authors because each research project may involve

modular sub-projects which are the work of different undergraduates. Posters presented at

institutional (on-campus), local, regional or national venues were all included in this study. An

institutional poster is, in most cases, presented at on-campus events aimed at showcasing the

research projects of students at 4-year colleges. Poster presentations on the national level are

often the result of efforts made by professional associations, such as the American Chemical

Society, to devote sessions at national meetings exclusively to presentations of posters by

undergraduates and the rise of national conferences dedicated exclusively to undergraduate

research presentations (such as the National Conference on Undergraduate Research which

started in 1987 as part of the Council for Undergraduate Research). Overall, the high number

of posters for undergraduate researchers is unsurprising as this is often an initial entry point

into scientific presentation.

The lower number of oral presentations, 175 in chemistry and 151 in physics, is an effect of

one author per oral presentation, as opposed to the likelihood for more than one author per

poster, and to fewer opportunities for oral presentations at on-campus events due to schedul-

ing and time availability of the academic community at 4-year colleges. A similar observation

applies for oral presentations at regional or national venues, where opportunities for oral pre-

sentations by undergraduate students are less common.

Factors affecting chemistry and physics student research products at PUI’s
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The most prestigious research product for undergraduate research is arguably the peer-

reviewed publication. In our database we found 119 peer-reviewed papers in chemistry and

104 in physics. Undergraduates conducting research in physics author a peer-review article at

a greater percentage than in chemistry, which may be an effect of the publishing culture in

each discipline. Female students conducting research with a physics faculty author a paper at a

lower proportion than male students. For peer-reviewed publications, females in chemistry

show a slightly greater percentage of papers while in physics females show a lower percentage

of papers. (See Table 2.)

Research product patterns by venue. The distribution of research products for both gen-

ders in each discipline were further investigated with respect to venue. From the 1197 total

poster and oral presentation entries recorded in the database, 63% correspond to regional or

national presentations. Table 2 shows that the percentages of research products authored by

venue in both disciplines are quite similar to their corresponding overall patterns seen in

Table 1.

A number of factors may influence whether undergraduate students present their research

at the local, regional or national level. Availability of local and regional venues to present

undergraduate research vary depending on the location of the institution (city and state), and

the existence of local and regional programs that support presentations by undergraduate stu-

dents. In some cases, chapters of professional associations organize regional conferences

where students present their research; federal or state funding may support state-wide confer-

ences targeted at undergraduates, while private or philanthropic initiatives may also provide

opportunities for research presentation by undergraduates. Four-year PUI’s provide funding,

limited in some instances, for students and faculty to attend regional or national meetings. Ini-

tiatives by organizations like the American Chemical Society, which has dedicated sessions at

national meetings for undergraduate posters and oral presentations (while still welcoming

undergraduate presentations in disciplinary sessions) as well as special seminars and program-

ming for undergraduate attendees, provide opportunities for students to disseminate their

research products at national venues.

Undergraduate student and research mentor gender match. To investigate whether the

completion of research products is influenced by the gender of the research mentor, the data

were inspected by analyzing the distribution of research products clustered by gender match

between student and research mentor (Table 3). Gender match is defined as the student and

faculty member having the same self-identified gender where no match indicates different self-

identified genders of the student and the faculty member. Overall, the percentages of gender

Table 2. Number of different types of research products and the venue of the research product by each gender in each discipline. Percentages of research products by

female students are shown in parentheses. In general, these percentages are similar to the overall distribution of student authors and student research products shown in

Table 1. For a bar graph of the percentages, see S3 and S4 Figs.

Type of Research Product Venue

Peer reviewed article Institutional paper Oral presentation Poster presentation On-campus or local Regional or national

Chemistry

Female 70 43 97 346 183 260

(59%) (75%) (55%) (51%) (55%) (50%)

Male 49 14 78 328 148 258

Physics

Female 32 8 51 80 36 9

(31%) (40%) (34%) (41%) (33%) (40%)

Male 72 12 100 117 73 143

https://doi.org/10.1371/journal.pone.0196338.t002
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match for different research products are almost equivalent in both disciplines except for peer-

reviewed articles in physics (See Table 3 below and S5 Fig). This exceptional behavior in phys-

ics could be due to its relatively small data size, and additional statistical analysis to answer the

question of significance of gender match will be presented below.

Statistical analysis using Generalized Linear Mixed Models with

hierarchical bootstrapping

In evaluating possible approaches to a more detailed statistical analysis of this dataset, a simple

linear regression model is not an appropriate choice. With linear regression, it is assumed that

the observations are independent from one another and fall into one common group that

holds common correlation characteristics. This feature is called fixed effects, which are con-

stants and are estimated from the data. In contrast, when the observations are not independent

and the measurements of the response variable are grouped according to some structure (such

as colleges, classes, countries, experimental units, etc.) or a hierarchy, there is a possible corre-

lation among the measurements in each group (observations within a group are correlated),

violating the independence of the observations. This subgrouping of data that is due to the

hierarchy adds random effects. Random effects are identified by the structure of hierarchy. For

example, if the observations are subgrouped by classes, then class will be a possible random

effect variable. When a significant hierarchical structure is present, it requires incorporating

both the random effects that came from the hierarchical structure of the data and also the fixed

effects from those independent observations under each level of the hierarchy together in the

model. “Mixed effects models” or simply “mixed models” are used to handle both of these

effects in regression models [52].

The dataset under study consists of data that form a hierarchy from each PUI to each faculty

member to each student. There are multiple students under each faculty member, and there

are multiple faculty members considered under each PUI. Within each subgroup, possible cor-

relations could occur among the observations within each of these subgroups. For example, it

is possible that a group of students who work under one faculty member work similarly due to

the influence of that faculty member and also work differently from a group of students who

work under a different faculty member. This hierarchy and the grouping structure affect the

independency of the observations, and it was necessary to capture the random effects into the

model, leading to the choice of Mixed Models (MM).

When modeling this dataset with MM, there are two objectives to achieve. One objective is

to model the number of research products as the response variable. The total number of

research products is a count (0, 1, 2, 3,. . .) and also non-negative. For a variable that allows

non-negative counts without an upper limit, a Poisson distribution is the best choice [53]

(note that a Binomial random variable has an upper limit: the values range from 0 up to an

upper limit of n). Therefore, when modeling the number of research products, the response

Table 3. Number of different research products by gender match in each discipline.

Peer reviewed articles Institutional papers Oral presentations Poster presentations

Chemistry

gender match 50 19 81 361

no match 69 38 94 312

Physics

gender match 72 15 80 103

no match 32 5 71 94

https://doi.org/10.1371/journal.pone.0196338.t003
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variable follows a Poisson distribution. This is different from linear regression. In linear

regression models, the response variable follows a normal distribution. For a continuous

response variable that follows a normal distribution, a linear regression model is the best

choice. Therefore, as the response variable in this case follows a Poisson distribution, a more

general version of linear regression models, known as Generalized Linear Models (GLM), is

appropriate. GLM extends the well-known linear regression models when the response vari-

able does not necessarily need to be normal. Since the response variable follows a Poisson dis-

tribution, it is necessary to use a GLM with a Poisson response variable. This is also called

“Poisson regression”. GLM, similar to linear regression, models only fixed effects. Following

the discussion about the need of a mixed model for this data, the Poisson regression model is

required to incorporate mixed effects into the model. Note that GLMM is a combination of

GLM and MM that combines both random and fixed effects. Therefore, the number of

research products was modeled using mixed effects Poisson regression. Furthermore, the

mixed effect Poisson regression models that are presented in Tables 4 and 5 were checked for

overdispersion. Poisson random variables assume the mean and the variance are equal. When

the variance is greater than the mean, an overdispersion occurs [54]. The mixed effect Poisson

regression models that are presented in Tables 4 and 5 resulted in estimated dispersion param-

eters (ratio of the variance to the mean) that are very close to 1 (chemistry: 1.101435 and phys-

ics: 1.100499), showing no overdispersion.

The second objective is to model the likeliness of a particular type of research product (arti-

cle, poster, oral presentation). For this objective, the response variable is binary (1 or 0) under

each type of research product. For example, one of the models was to check how likely it is for

a student to produce a poster presentation based on the characteristics under consideration

(gender, faculty advisor, etc). With a binary response variable, the best candidate is logistic

regression [52]. Due to the hierarchical structure in the data, a mixed effects logistic regression

model was used.

For this data, there are eight (8) different models. To analyze the total number of research

products within each discipline (chemistry and physics), two (2) mixed effect Poisson regres-

sion models are used. To evaluate the three types of research products (article, poster, oral pre-

sentation) in both disciplines (chemistry and physics), there are six (6) mixed effect logistic

regression models. Different combinations of fixed effect variables and random effect variables

were tested in both mixed effect Poisson regression and mixed effect Logistic regression.

One important finding was that the models with faculty identifier as the random effect pro-

duced the best results for the model evaluation criteria when compared to the models with

PUI as a random effect variable and to the models with both faculty identifier and PUI together

Table 4. Bootstrap results of mixed effect Poisson regression for chemistry data on 1000 bootstrap repetitions. The response variable of total number of research

products was modeled using student gender, faculty rank, venue, and gender match as input variables with faculty identifier as a random effect as explained in the GLMM

Approach section. Note that faculty rank and venue are significant.

Model: total number of research products = student gender + faculty rank + venue + gender match. Random effect: faculty

Estimate standard error 95% confidence interval

Intercept 1.134 0.111 0.859 1.561

student gender = female -0.174 0.036 -0.290 0.149

faculty rank = associate professor -0.383 0.042 -0.608 -0.023

faculty rank = full professor -0.692 0.155 -1.190 -0.085

venue = regional or national 0.161 0.038 0.004 0.280

student—faculty gender match 0.202 0.036 -0.147 0.321

standard deviation of random effect 0.555 NA 0.371 0.708

https://doi.org/10.1371/journal.pone.0196338.t004
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as random effects. The best models were identified by comparing the AIC (Akaike Information

Criterion) and BIC (Bayesian Information Criterion) of the models. Smaller values of AIC and

BIC indicate better models. The GLMM with faculty identifier produced the smallest values

for AIC and BIC when comparing to the models with PUI as a random effect variable and to

the models with both faculty identifier and PUI as random effect variables. As a result,

GLMMs with faculty identifier as a random effect were determined to be the best models and

are used in the remainder of the paper.

The datasets used for this study are from a total of 388 students in chemistry and 160 stu-

dents in physics. In total, those 548 students have produced 1497 undergraduate research

products. This is a relatively small sample. To overcome the effect of the small sample size,

bootstrapping was applied to parameter estimation. Bootstrapping is a commonly used resam-

pling technique. When the sample of data used in a study is not sufficiently large or when it is

difficult to make multiple samples from the population, bootstrapping helps by creating sam-

ples from the existing sample [55]. In this case, the existing sample serves as the “population”

to the multiple bootstrap samples. These multiple bootstrap samples aid in understanding the

characteristics of the different statistics presented. For example, these multiple bootstrap sam-

ples can be used to create confidence intervals of the parameter estimates in different GLMMs.

When using bootstrapping, it is important to preserve the original characteristic of the sample

data. Since our data form a hierarchy, it was imperative to maintain the same hierarchy when

resampling from the dataset. To maintain the hierarchy, hierarchical bootstrapping was used

[53]. The bootstrap confidence intervals based on 1000 bootstrap samples for each parameter

estimate are presented in Tables 4, 5, 6 and 7. All the models were implemented using the sta-

tistical software ‘R’.

The main purpose of this study is to identify the factors that influence the completion of

student research products at PUIs. To contextualize this study and harmonize all eight mixed

models, GLMMs with both significant and non-significant variables will be shown. This will

highlight the relationship of the predictor variables with the response variable, if any, and iden-

tify the influential and non-influential factors for the corresponding response variables, lead-

ing the statistical analysis towards “detection” rather than “prediction.” Therefore, for the task

of detecting relationship, model statistics such as explained deviation (pseudo R2) are not rele-

vant because the nature of the relationship of the variables does not change depending on the

value of the R2 [56]. However, statistics that describe the effects of random and fixed effects in

the model will be presented. The measure of the variability of the random effects in the model,

parameter estimates corresponding to the predictor variables, and bootstrap confidence inter-

vals will also be presented. The measure of the variability of the random effects describes the

Table 5. Bootstrap results of mixed effect Poisson regression for physics data on 1000 bootstrap repetitions. The response variable of total number of research prod-

ucts was modeled using student gender, faculty rank, venue, and gender match as input variables with faculty identifier as a random effect as explained in the GLMM

Approach section. Note that only the gender match is significant.

Model: total number of research products = student gender + faculty rank + venue + gender match. Random effect: faculty

Estimate standard error 95% confidence interval

Intercept 0.800 0.128 0.426 1.294

student gender = female 0.092 0.073 -0.347 0.330

faculty rank = associate professor 0.036 0.071 -0.723 0.302

faculty rank = full professor 0.329 0.195 -0.417 1.108

venue = regional or national 0.208 0.076 -0.001 0.415

student—faculty gender match 0.477 0.074 0.025 0.723

standard deviation of random effect 0.350 NA 0.143 0.565

https://doi.org/10.1371/journal.pone.0196338.t005
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Table 6. Bootstrap results of mixed effect logistic regression for chemistry data on 1000 bootstrap repetitions. The response variable of log odds of a particular type

of research product was modeled using student gender and gender match as input variables with faculty identifier as a random effect as explained in the GLMM Approach

section. Note that neither student gender nor gender match is significant.

Model 1: log odds of an oral presentation = student gender + gender match

Random effect: Faculty

Estimate standard error 95% confidence interval

Intercept -1.614 0.214 -2.343 -1.156

student gender = female -0.036 0.192 -0.726 0.588

student—faculty gender match 0.126 0.192 -0.467 0.803

standard deviation of random effect 0.766 NA 0.690 1.673

Model 2: log odds of a peer reviewed article = student gender + gender match

Random effect: Faculty

Estimate standard error 95% confidence interval

Intercept -2.415 0.281 -3.580 -1.974

student gender = female 0.070 0.260 -0.776 0.741

student—faculty gender match 0.426 0.260 -0.276 1.128

standard deviation of random effect 0.981 NA 0.731 1.975

Model 3: log odds of a poster presentation = student gender + gender match

Random effect: Faculty

Estimate standard error 95% confidence interval

Intercept 0.710 0.213 0.162 1.162

student gender = female -0.138 0.168 -0.715 0.456

student—faculty gender match -0.351 0.167 -0.942 0.191

standard deviation of random effect 0.923 NA 0.752 1.764

https://doi.org/10.1371/journal.pone.0196338.t006

Table 7. Bootstrap results of mixed effect logistic regression for physics data on 1000 bootstrap repetitions. The response variable of log odds of a particular type of

research product was modeled using student gender and gender match as input variables with faculty identifier as a random effect as explained in the GLMM Approach

section. Note that neither student gender nor gender match is significant.

Model 1: log odds of an oral presentation = student gender + gender match

Random effect: Faculty

Estimate standard error 95% confidence interval

Intercept -0.804 0.227 -1.596 -0.924

student gender = female -0.253 0.287 -0.685 0.397

student—faculty gender match 0.243 0.283 -0.383 0.723

standard deviation of random effect 0.662 NA 0.152 0.693

Model 2: log odds of a peer reviewed article = student gender + gender match

Random effect: Faculty

Estimate standard error 95% confidence interval

Intercept -2.670 0.847 -5.667 -1.724

student gender = female 0.375 0.907 -0.595 1.317

student—faculty gender match -0.299 0.907 -1.287 0.691

standard deviation of random effect 2.478 NA 0.987 3.961

Model 3: log odds of a poster presentation = student gender + gender match

Random effect: Faculty

Estimate standard error 95% confidence interval

Intercept -0.661 0.439 -2.376 -0.749

student gender = female 0.072 0.309 -0.500 0.493

student—faculty gender match -0.085 0.309 -0.587 0.357

standard deviation of random effect 1.604 NA 0.290 2.013

https://doi.org/10.1371/journal.pone.0196338.t007
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amount of variation added by the random effect variable (the variable that subgroups the data-

set) to the model. A useful random effect variable is expected to a have a significant non-zero

variability added to the model. The bootstrap confidence intervals will be used as a way of

deciding the significance of each parameter and hence the usefulness of the corresponding pre-

dictor variable in the model.

Tables 4 and 5 show the bootstrap results of mixed effect Poisson regression for the chemis-

try and physics data sets with the total number of research products of each student as the

response variable. The tables consist of natural logarithm values of the parameter estimates

under the “Estimate” column in each table. Therefore, when interpreting the change in the

total number of research products produced by a student, the exponential value of the corre-

sponding parameter estimate will be taken. It is important to note that the confidence intervals

for the standard deviation of the random effect (in this case Faculty) does not contain the

value zero in all the eight mixed models presented here. This indicates that the variance (or the

square of the standard deviation) of the random effect is significantly non-zero in all the

mixed effect models, indicating that the use of the faculty as a random effect variable adds a

significant variability to the mixed model. This shows that the research products of students of

one faculty member have a similar pattern and are different from those of another faculty

member.

For chemistry, the faculty ranks of associate professor and full professor as well as venue are

significant (confidence intervals do not contain the value zero). The estimates suggest that as

the faculty research mentor moves up in rank, the total number of student research products

increases by less than 1 when all other factors are kept fixed. For example, when faculty rank

increases from assistant professor to associate professor, the average number of research prod-

ucts will go up by 0.682 (or e-0.383), when all other factors remain the same. Similarly, when the

faculty rank increases from assistant professor to full professor the average number of research

products will go up by 0.501 (or e-0.692), when all other factors are kept fixed. In addition, by

changing the venue from “on-campus or local” to “regional or national” the total number of

research products will go up by 1.17 (or e0.161), when all the other factors remain the same.

(Note that the parameter estimates should be converted to its corresponding exponential

value). No significant student or faculty gender effect is observed.

For physics (Table 5), only the student-faculty gender match is significant (as the confi-

dence interval does not contain zero). The parameter estimate (0.477) suggests that working

with an advisor with the same gender as the student, will increase the average number of

research products by 1.6 (or e0.477), when all other factor are fixed.

Tables 6 and 7 show six (6) different mixed effect logistic regression models of how likely

each particular research product (oral presentations, poster presentation and peer-reviewed

articles) is produced in each discipline (chemistry and physics). In both disciplines, it is clear

that student gender and gender match are not influential in determining whether a student

produces a particular type of research product (note that all confidence intervals contain the

value zero).

The GLMM with hierarchical bootstrapping results show that student gender is not an

important factor in determining the total number of undergraduate research products at the

four PUIs studied here. (Tables 4 and 5). Further, gender does not play a role in producing

each research product (Tables 6 and 7). The results indicate that faculty rank appears to be a

minor factor in the generation of undergraduate research products for chemistry but not for

physics. In physics, gender match is significant; the total number of research products

increases by 1.6 when going from not matching genders to matching genders.

Previous work has shown that individual attributes of faculty members (training, profes-

sional contacts, research record, etc.) and structural factors (work environment, culture of
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department, public versus private institution, etc.) have more impact than faculty rank [57–

59]. Given the similarity of departments and institutions of this data set, the differences that

are seen in this data set based on faculty rank cannot be easily explained using the hypotheses

suggested in the literature.

Conclusions

This study of research products of undergraduates at four primarily undergraduate institu-

tions, from 2004 to 2013 sets a benchmark for the assessment of undergraduate research

efforts. Statistical models indicate that student gender or gender match of the student and fac-

ulty member had no impact on producing each type of research product (Tables 6 and 7) by

undergraduate students at the PUIs in this study. While no significant effect due to participant

gender was observed for type of research product, a number of factors did impact the total

number of research products a student generated. In chemistry, students were likely to gener-

ate more research products if they presented at a regional or national venue (Table 4). This is

perhaps a function of the location and culture of these institutions. More data from other PUIs

is necessary to contextualize this finding. In physics, student-faculty pairs of the same gender

generated more research products than mixed-gender pairs. While faculty rank appears to

play a minor role in the chemistry data analyzed here (Table 4), the likely increase in the num-

ber of research products for a student is less than one if their advisor is below the rank of asso-

ciate professor. Because all the models identified the faculty as the random effect with

significant variance, it indicates that the group of students of one faculty member works differ-

ently from the group of students who work under a different faculty member.

It is clear that the culture of the institutions in this study promotes the participation of

undergraduates in research experiences. There are, of course, a number of questions that

remain to be addressed that require additional information from a broad range of institutions.

A non-exhaustive list of these questions include the following: How do research product distri-

butions compare to other PUIs and Tier 1 research universities? What role does faculty rank

play at other PUIs and Tier 1 institutions? In what way do subdisciplines of chemistry and

physics impact research product distribution? To what extent does dissemination of under-

graduate research products influence students’ decisions on persistence in STEM (whether

graduate school or job market) after college graduation? How does the research culture in light

of gender compare between PUIs and research intensive universities?

To address these questions a broad, longitudinal study of research products at a wide variety

of institutions and incorporating student surveys is necessary. We see an opportunity here for

the academic community to provide a more accurate picture of the state of undergraduate

research at the national level. Specifically, we encourage science departments at both the

undergraduate and graduate level to collect and share their own data to provide a more robust

view of the effectiveness of undergraduate research experiences at PUIs.

Supporting information

S1 Fig. Normalized distributions of the number of student products by gender in each dis-

cipline. The horizontal axis represents the number of products authored by an individual stu-

dent. The vertical axis represents the relative frequency of the number of products.

(TIF)

S2 Fig. Box plots of the number of research products for each gender in each discipline.

The dark vertical line is the mean number of research products in the data set, and the two ver-

tical lines beside the mean are 1st and the 3rd quartiles. The vertical line connected to the
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box with the dotted line is called the adjunct value—the maximum of the dataset after remov-

ing the outliers. Outliers appear as dots to the right of the vertical line.

(TIF)

S3 Fig. Percentages of poster presentations, oral presentations, and peer-reviewed publica-

tions per discipline and per gender. For comparison, the leftmost two bars correspond to the

percentage of student authors. Data that comprise these percentages are shown in Table 2 in

the main manuscript.

(TIF)

S4 Fig. Percentage of research products (including only oral and poster presentations) by

location of venue per discipline and per gender. For comparison, the leftmost two bars corre-

spond to the percentage of student authors.

(TIF)

S5 Fig. Percentages of research product type per discipline based on student-research advi-

sor gender match.

(TIF)

S1 Table. Summary statistics of research products per student. See S2 Fig for a boxplot of

these data.
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S1 Text. Outlier analysis of data and model selection criteria.

(DOCX)

Acknowledgments

The authors would like to thank their colleagues for mentoring undergraduate students in

research over the years.

Author Contributions

Conceptualization: Birgit Mellis, Patricia Soto, Chrystal D. Bruce, Graciela Lacueva, Anne M.

Wilson.

Data curation: Patricia Soto, Rasitha Jayasekare.

Formal analysis: Patricia Soto, Rasitha Jayasekare.

Investigation: Birgit Mellis, Patricia Soto, Chrystal D. Bruce, Graciela Lacueva, Anne M.

Wilson.

Visualization: Patricia Soto, Rasitha Jayasekare.

Writing – original draft: Birgit Mellis, Patricia Soto, Chrystal D. Bruce, Graciela Lacueva,

Anne M. Wilson.

Writing – review & editing: Birgit Mellis, Patricia Soto, Chrystal D. Bruce, Graciela Lacueva,

Anne M. Wilson, Rasitha Jayasekare.

References
1. American Academy of Arts and Sciences, “Commission on the Future of Undergraduate Education,”

2017. https://www.amacad.org/content/Research/researchproject.aspx?i=21999 (accessed 1-21-

2018).

Factors affecting chemistry and physics student research products at PUI’s

PLOS ONE | https://doi.org/10.1371/journal.pone.0196338 April 26, 2018 14 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196338.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196338.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196338.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196338.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196338.s007
https://www.amacad.org/content/Research/researchproject.aspx?i=21999
https://doi.org/10.1371/journal.pone.0196338


2. Karukstis K. K., Elgren T. E., editors. Developing & Sustaining a Research-Supportive Curriculum: A

Compendium of Successful Practices. Washington, DC: Council on Undergraduate Research; 2007.

3. Strengthening the STEM Pipeline: The Contributions of Small and Mid-Sized Independent Colleges. A

Report by the Council of Independent Colleges; 2014.

4. Arastoopour G., Chesler N. C., Shaffer D.W. Epistemic Persistence: A simulation-based approach to

increasing participation of women in engineering. J. Women Minor. Sci. Eng. 2014; 20(3):211–234.

5. Seymour E., Hunter A., Laursen S. L., Deantoni T. Establishing the Benefits of Research Experiences

for Undergraduates in the Sciences: First Findings from a Three-Year Study. Sci. Educ. 2004; 88:493–

534.

6. Future of U. S. Chemistry Research: Benchmarks and Challenges. Washington, DC: National

Research Council of the National Academies, National Academies Press; 2007.

7. “Higher Education in Science and Engineering” in Science and Engineering Indicators. Washington,

DC: National Science Foundation; 2006. p. 2–1–2–39.

8. “Enabling Undergraduates to Experience the Excitement of Biology” in Bio2010 Transforming Under-

graduate Education For Future Research Biologists. Washington, DC: National Research Council of

the National Academies, National Academies Press; 2003. p. 87–100.

9. Seago J. L. Jr. The Role of Research in Undergraduate Instruction. The Amer. Biol. Teach. 1992; 54

(7):401–405.

10. Nikolova Eddins S. G., Williams D. F., Bushek D., Porter D. Searching for a Prominent Role of Research

in Undergraduate Education: Project Interface. J. Excellence Coll. Teach. 1997; 8(1):69–81.

11. Nikolova Eddins S. G., Williams D. F. Research-Based Learning for Undergraduates: A Model for

Merger of Research and Undergraduate Education. J. Excellence Coll. Teach. 1997; 8(3):77–94.

12. Lopatto D. Survey of Undergraduate Research Experiences (SURE): First Findings. Cell. Biol. Educ.

2004; 3:270–277. https://doi.org/10.1187/cbe.04-07-0045 PMID: 15592600

13. Fletcher L. S. The Role of Research in Undergraduate Engineering Education. AIChE Symposium Ser:

Heat Transfer—Atlanta 1993. 1993; 89(295):520–525.

14. Lopatto D. Undergraduate Research as a Catalyst for Liberal Learning. Peer Review. 2006; 8(1):22–24.

15. Sanzone G. J. Undergraduate Research in Chemistry. Chem. Educ.1997; 54:566–568.

16. Burnett J. F. The Education of Butchers and Bakers and Public Policy Makers. J. Chem. Educ.1984;

61:509–510.

17. Nagada B. A., Gergerman S. R., Jonides J., von Hippel W., Lerner J. S. Undergraduate Student-Faculty

Research Partnerships Affect Student Retention. Rev. Higher Educ. 1998; 22:55–72.

18. Kerr S., Runquist O. Are we Serious about Preparing Chemists for the 21st Century Workplace or are

we Just Teaching Chemistry? J. Chem. Educ. 2005; 82(2):231–233.

19. De La Garza J. M., Anderson S. K., Lee J. A. N. Undergraduate Research Through Summer Intern-

ships. Engineering Educ. 1991; 81(3):384–385.

20. Manduca C. A. Learning Science Through Research: The Keck Geology Consortium Undergraduate

Research Program. Geotimes 1997; 42(10):27–30.

21. Gueldner S. H., Clayton G. M., Bramlett M. H., Boettcher J. H. The Undergraduate Student as Research

Assistant: Promoting Scientific Inquiry. Nurse Educator. 1993; 18(3):18–21. PMID: 8336851

22. Summers M. E., Hrabowski F. A. III Preparing Minority Scientists and Engineers. Science. 2006;

311:1870–1871. https://doi.org/10.1126/science.1125257 PMID: 16574853

23. Mabrouk P. A. Survey Study Investigating the Significance of Conference Participation to Undergradu-

ate Research Students. J. Chem. Educ. 2009; 86(11):1335–1340.

24. Pezzoni M, Mairesse J, Stephan P, Lane J. Gender and the Publication Output of Graduate Students:A

Case Study. PLoS ONE. 2016; 11(1): e0145146. https://doi.org/10.1371/journal.pone.0145146 PMID:

26760776

25. Kuo M. Undergraduate research would benefit from better comparative data, says Academies panel.

2017. https://doi.org/10.1126/science.aal0826

26. Blickenstaff J. C. Women and science careers: leaky pipeline or gender filter? Gender Educ. 2005; 17

(4):369–387. https://doi.org/10.1080/09540250500145072

27. Adamuti-Trache M., Andres L. Embarking on and Persisting in Scientific Fields of Study: Cultural capi-

tal, gender, and curriculum along the science pipeline. Int. J. Sci. Educ.2008; 30(12):1557–1584.

https://doi.org/10.1080/09500690701324208

28. Sheltzer J. M., Smith J. C. Elite male faculty in the life sciences employ fewer women. Proc. Natl. Acad.

Sci. 2014; 111(28):10107–10112. https://doi.org/10.1073/pnas.1403334111 PMID: 24982167

Factors affecting chemistry and physics student research products at PUI’s

PLOS ONE | https://doi.org/10.1371/journal.pone.0196338 April 26, 2018 15 / 17

https://doi.org/10.1187/cbe.04-07-0045
http://www.ncbi.nlm.nih.gov/pubmed/15592600
http://www.ncbi.nlm.nih.gov/pubmed/8336851
https://doi.org/10.1126/science.1125257
http://www.ncbi.nlm.nih.gov/pubmed/16574853
https://doi.org/10.1371/journal.pone.0145146
http://www.ncbi.nlm.nih.gov/pubmed/26760776
https://doi.org/10.1126/science.aal0826
https://doi.org/10.1080/09540250500145072
https://doi.org/10.1080/09500690701324208
https://doi.org/10.1073/pnas.1403334111
http://www.ncbi.nlm.nih.gov/pubmed/24982167
https://doi.org/10.1371/journal.pone.0196338


29. Martinez E. D., Botos J., Dohoney K. M., Geiman T. M., Kolla S. S., Olivera A., et al. Falling off the aca-

demic bandwagon; Women are more likely to quit at the postdoc to principal investigator transition.

EMBO Reports. 2007; 8(11):977–981. https://doi.org/10.1038/sj.embor.7401110 PMID: 17972894

30. Pell A. N. Fixing the leaky pipeline: women scientists in academia. J. Anim. Sci. 1996; 74: 2843–2848.

PMID: 8923199

31. Riffle R., Schneider T., Hillard A., Polander E., Jackson S., DesAutels P., et al. A mixed methods study

of gender, STEM department climate, and workplace outcomes. J. Women Minor. Sci. Eng. 2013; 19

(3):227–243.

32. Hill C., Corbett C., St. Rose A. Why So Few? Women in Science, Technology, Engineering, and Mathe-

matics. AAUW, Washington, DC, 2010.

33. Hazari Z., Potvin G. Views on Female Under-Representation in Physics: Retraining Women or Rein-

venting Physics? Elec. J. Sci. Educ. 2005; 10(1). http://wolfweb.unr.edu/homepage/crowther/ejse/

potvin.pdf

34. College Board. Program Summary Report. Accessed: May 5, 2017. http://media.collegeboard.com/

digitalServices/pdf/research/programsummaryreport_47033.pdf

35. National Science Foundation. Women, Minorities, and Persons with Disabilities in Science and Engi-

neering, Data Tables. Accessed May 5, 2017. https://www.nsf.gov/statistics/2017/nsf17310/data.

cfmhttps://www.nsf.gov/statistics/2017/nsf17310/data.cfmhttps://www.nsf.gov/statistics/2017/

nsf17310/data.cfmhttps://www.nsf.gov/statistics/2017/nsf17310/data.cfm

36. College Board. AP Program Participation and Performance Data 2016. Accessed: May 5, 2017. https://

research.collegeboard.org/programs/ap/data/participation/ap-2016.

37. Howes B., Wilson A. M. “Hidden Gems: An Analysis of Products of Undergraduate Research”. CUR

Quarterly. 2015; 35(3):38.

38. Paananen, A. Getting Women in the Lab. The Runner. 18 August 2015. http://runnermag.ca/2015/08/

getting-women-in-the-lab/. Cited 14 March 2017.

39. Ginther, D. K., Kahn, S. Does science promote women? Evidence from academia 1973–2001. National

Bureau of Economic Research, Working Paper 12691. 2006. http://www.nber.org/papers/w12691.

40. Williams, W. M., Ceci, S. J. Academic Science Isn’t Sexist. New York Times, 31 October 2014. http://

www.nytimes.com/2014/11/02/opinion/sunday/academic-science-isnt-sexist.html. Cited 7 March 2017.

41. Bernstein R. No sexism in science? Not so fast, critics say. Science. 2014; 346(6211):798.

42. Brainard S. G., Carlin L. A Six-Year Study of Undergraduate Women in Engineering and Science. J.

Engineering Educ. 1998; 87(4):369–375.

43. West J. D., Jacquet J., King M. M., Correll S. J., Bergstrom C. T. The Role of Gender in Scholarly

Authorship. PLoS ONE. 2013; 8(7): e66212. https://doi.org/10.1371/journal.pone.0066212 PMID:

23894278

44. Jagsi R., Guancial E. A., Cooper Worobey C., Henault L. E., Chang Y., Starr R., et al. The “Gender

Gap” in Authorship of Academic Medical Literature—A 35-Year Perspective. N. Engl. J. Med. 2006;

355:281–287. https://doi.org/10.1056/NEJMsa053910 PMID: 16855268

45. Abramo G., D’Angelo C. A., Caprasecca A. Gender differences in research productivity: A bibliometric

analysis of the Italian academic system. Scientometrics. 2009; 79:517–539.

46. Moss-Racusin C. A., Molenda A. K., Cramer C. R. Can Evidence Impact Attitudes? Public Reactions to

Evidence of Gender Bias in STEM Fields. Psych. Women Quarterly. 2015; 1:1–15. https://doi.org/10.

1177/0361684314565777

47. Cheryan S., Master A., Meltzoff A. N. Cultural stereotypes as gatekeepers: increasing girls’ interest in

computer science and engineering by diversifying stereotypes. Front. Psychol. 2015; 11(6):1–8. https://

doi.org/10.3389/fpsyg.2015.00049 PMID: 25717308

48. Master A., Cheryan S., Meltzoff A. N. Reducing adolescent girls’ concerns about STEM stereotypes:

When do female teachers matter? Int. Rev. Soc. Psych. [Special issue: Stereotype threat in children].

2014; 27:79–102.

49. Harsh J. A., Maltese A. V., Tai R. H. A Perspective of Gender Differences in Chemistry and Physics

Undergraduate Research Experiences. J. Chem. Educ. 2012; 89:1364–1370.

50. Sproken-Smith R., Brodeur J., Kajaks T., Luck M., Myatt P., Verburgh A., et al. Completing the

Research Cycle: A Framework for Promoting Dissemination of Undergraduate Research and Inquiry.

Teaching and Learning Inquiry. 2013; 1:105–118.

51. U. S. Department of Education, National Center for Education Statistics, Integrated Postsecondary

Education Data System (IPEDS), Fall 2012. http://nces.ed.gov/programs/digest/d13/.

52. Faraway J., Extending the Linear Model with R—Generalized Linear, Mixed Effects and Nonparametric

Regression Models, 2nd edition, CRC Press, 2016

Factors affecting chemistry and physics student research products at PUI’s

PLOS ONE | https://doi.org/10.1371/journal.pone.0196338 April 26, 2018 16 / 17

https://doi.org/10.1038/sj.embor.7401110
http://www.ncbi.nlm.nih.gov/pubmed/17972894
http://www.ncbi.nlm.nih.gov/pubmed/8923199
http://wolfweb.unr.edu/homepage/crowther/ejse/potvin.pdf
http://wolfweb.unr.edu/homepage/crowther/ejse/potvin.pdf
http://media.collegeboard.com/digitalServices/pdf/research/programsummaryreport_47033.pdf
http://media.collegeboard.com/digitalServices/pdf/research/programsummaryreport_47033.pdf
https://www.nsf.gov/statistics/2017/nsf17310/data.cfmhttps://www.nsf.gov/statistics/2017/nsf17310/data.cfmhttps://www.nsf.gov/statistics/2017/nsf17310/data.cfmhttps://www.nsf.gov/statistics/2017/nsf17310/data.cfm
https://www.nsf.gov/statistics/2017/nsf17310/data.cfmhttps://www.nsf.gov/statistics/2017/nsf17310/data.cfmhttps://www.nsf.gov/statistics/2017/nsf17310/data.cfmhttps://www.nsf.gov/statistics/2017/nsf17310/data.cfm
https://www.nsf.gov/statistics/2017/nsf17310/data.cfmhttps://www.nsf.gov/statistics/2017/nsf17310/data.cfmhttps://www.nsf.gov/statistics/2017/nsf17310/data.cfmhttps://www.nsf.gov/statistics/2017/nsf17310/data.cfm
https://research.collegeboard.org/programs/ap/data/participation/ap-2016
https://research.collegeboard.org/programs/ap/data/participation/ap-2016
http://runnermag.ca/2015/08/getting-women-in-the-lab/
http://runnermag.ca/2015/08/getting-women-in-the-lab/
http://www.nber.org/papers/w12691
http://www.nytimes.com/2014/11/02/opinion/sunday/academic-science-isnt-sexist.html
http://www.nytimes.com/2014/11/02/opinion/sunday/academic-science-isnt-sexist.html
https://doi.org/10.1371/journal.pone.0066212
http://www.ncbi.nlm.nih.gov/pubmed/23894278
https://doi.org/10.1056/NEJMsa053910
http://www.ncbi.nlm.nih.gov/pubmed/16855268
https://doi.org/10.1177/0361684314565777
https://doi.org/10.1177/0361684314565777
https://doi.org/10.3389/fpsyg.2015.00049
https://doi.org/10.3389/fpsyg.2015.00049
http://www.ncbi.nlm.nih.gov/pubmed/25717308
http://nces.ed.gov/programs/digest/d13/
https://doi.org/10.1371/journal.pone.0196338


53. Mixed Effects Logistic Regression | R Data Analysis Examples, Accessed June 20 2017, https://stats.

idre.ucla.edu/r/dae/mixed-effects-logistic-regression/https://stats.idre.ucla.edu/r/dae/mixed-effects-

logistic-regression/

54. Zuur A.; Ieno E.; Walker N.; Saveliev A.; Smith S. “Mixed Effects Models and Extensions in Ecology

with R” Springer, 2009

55. Chong SF, Choo R. Introduction to Bootstrap. Proceedings of Singapore Healthcare. 2011 Sep; 20

(3):236–40.

56. Frost, Jim, How high does R-squared need to be, Accessed December 3 2017, http://statisticsbyjim.

com/regression/how-high-r-squared/

57. Dundar H.; Lewis D. R. “Determinant of Research Productivity in Higher Education” Research in Higher

Education, 1998, 39 (6), 607–631.

58. Toutkoushian R. K.; Porter S. R.; Danielson C.; Hollis P. R. “Using Publications Counts to Measure an

Institution’s Research Productivity” Research in Higher Education, 2003, 44 (2), 121–148.

59. a. Blackburn R. T.; Behymer C. E.; Hall D. E. “Correlates of Faculty Publications” Sociology of Educa-

tion, 1978, 51 (2), 132–141. b. Tien, F. F.; Blackburn, R. T. “Faculty Rank System, Research Motivation

and Faculty Research Productivity: Measure Refinement and Theory Testing” The Journal of Higher

Education, 1996, 67 (1), 2–22.

Factors affecting chemistry and physics student research products at PUI’s

PLOS ONE | https://doi.org/10.1371/journal.pone.0196338 April 26, 2018 17 / 17

https://stats.idre.ucla.edu/r/dae/mixed-effects-logistic-regression/https://stats.idre.ucla.edu/r/dae/mixed-effects-logistic-regression/
https://stats.idre.ucla.edu/r/dae/mixed-effects-logistic-regression/https://stats.idre.ucla.edu/r/dae/mixed-effects-logistic-regression/
https://stats.idre.ucla.edu/r/dae/mixed-effects-logistic-regression/https://stats.idre.ucla.edu/r/dae/mixed-effects-logistic-regression/
http://statisticsbyjim.com/regression/how-high-r-squared/
http://statisticsbyjim.com/regression/how-high-r-squared/
https://doi.org/10.1371/journal.pone.0196338

	Factors affecting the number and type of student research products for chemistry and physics students at primarily undergraduate institutions: A case study.
	Recommended Citation
	Authors

	Factors affecting the number and type of student research products for chemistry and physics students at primarily undergraduate institutions: A case study

