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†

† Background and Aims Global environmental change will affect non-native plant invasions, with profound po-
tential impacts on native plant populations, communities and ecosystems. In this context, we review plant func-
tional traits, particularly those that drive invader abundance (invasiveness) and impacts, as well as the integration
of these traits across multiple ecological scales, and as a basis for restoration and management.
† Scope We review the concepts and terminology surrounding functional traits and how functional traits influence
processes at the individual level. We explore how phenotypic plasticity may lead to rapid evolution of novel traits
facilitating invasiveness in changing environments and then ‘scale up’ to evaluate the relative importance of
demographic traits and their links to invasion rates. We then suggest a functional trait framework for assessing
per capita effects and, ultimately, impacts of invasive plants on plant communities and ecosystems. Lastly, we
focus on the role of functional trait-based approaches in invasive species management and restoration in the
context of rapid, global environmental change.
† Conclusions To understand how the abundance and impacts of invasive plants will respond to rapid environ-
mental changes it is essential to link trait-based responses of invaders to changes in community and ecosystem
properties. To do so requires a comprehensive effort that considers dynamic environmental controls and a tar-
geted approach to understand key functional traits driving both invader abundance and impacts. If we are to
predict future invasions, manage those at hand and use restoration technology to mitigate invasive species
impacts, future research must focus on functional traits that promote invasiveness and invader impacts under
changing conditions, and integrate major factors driving invasions from individual to ecosystem levels.

Key words: Climate change, non-native plant, plant invasion, functional traits, plant traits, invasiveness, invader
impacts.

INTRODUCTION

The synergistic effects of global environmental change and
continued spread of non-native species present tremendous
challenges for understanding and predicting how natural eco-
systems will be altered over coming decades. Such an under-
standing is essential if we are to mitigate the negative effects
of environmental change through ecological restoration. With
the aim of improving human response to invasive species
through both policy and management, three fundamental re-
search needs are to (a) develop means to identify potentially
harmful invasive plants; (b) assess the impacts of currently in-
vasive plants to develop and prioritize management plans; and
(c) develop invasive plant management and ecological restor-
ation strategies in the context of changing environments. As a
step towards these goals, we promote a plant trait-based ap-
proach for predicting invasion success and impact.

Many managers and scientists use the term ‘invasive’ to de-
scribe species that are introduced, establish, spread and even-
tually ‘cause harm’ (Mack et al., 2000). Indeed, ‘invasive’
has been defined by the federal government in Executive
Order 13112 to be non-native species that ‘cause harm’ to
the environments that they invade. Generalizing the term in
this way obscures the distinction between the process of inva-
sion versus the process of developing impact and introduces
the ill-defined concept of ‘harm’. For the purposes of this
paper, therefore, the term ‘invasive’ will only apply to plant
species that establish and show or have potential for rapid
spread in areas of introduction, rather than a more broadly
applied definition that implies both abundance and negative
impact. Ehrenfeld (2010) provides an extensive review of evi-
dence that suggests many invasive plant species with measur-
able ecological impacts express traits that enhance their
performance relative to native species and that simultaneously
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result in alterations to ecosystem-level processes such as nutri-
ent cycling. However, some attempts to identify traits asso-
ciated with both invasion and impact have yielded mixed
results or have not detected differences between invasive and
native species (Daehler, 2003; Leishman et al., 2010, Tecco
et al., 2010). This discrepancy underscores the complexity in
predicting plant invasiveness and species impacts and the
need for a framework for trait comparison (Ehrenfeld, 2010).

Significant progress has been made towards developing a
general, conceptual framework for invasions, and more inclu-
sive and mechanistic approaches to improve hypothesis testing
of casual factors should lead to better understanding and man-
agement of biological invasions (Gurevitch et al., 2011). In
this review, we address the potential importance of plant func-
tional traits across scales of ecological organization, across
phases of invasion and impact, and within a restoration and
management context. We first address the historical context
and terminology associated with plant traits and environmental
change. We then discuss functional traits at the level of the in-
dividual, delineating between different types of functional
traits and assessment of their relative impacts on species per-
formance and species effects in a system. Interpreting the
role of functional traits naturally leads into a discussion of
how plasticity in these traits may lead to rapid evolution and
invader success in changing environments. ‘Scaling up’ to
population-level processes, we review modelling tools used
to evaluate the relative importance of individual traits, demo-
graphic rates and their links to invasion rates. We then discuss
the difficulties in defining invader impacts on communities
and ecosystems and suggest a functional trait framework for
assessing per capita effects as well as traits affecting popula-
tion growth that together may help predict ecological impact.
In addition to assessing these effects, we suggest functional
trait-based approaches in invasive species management and
restoration in the context of environmental change.

PLANT FUNCTIONAL TRAITS: RESPONSE
TO IMPACTS AT MULTIPLE SCALES

Much of the inspiration that led Darwin (1859) and Wallace
(1870) to develop the theory of evolution came from their bio-
geographical observations of how trait variation influences sur-
vival and fitness. Elton’s seminal work highlighting concerns
over invasive, non-native species suggested that invasive
species have unique traits that allow them to exploit
species-poor communities (Elton, 1958). He predicted the
most successful non-native species would have traits that
promote effective reproduction and dispersal, superior com-
petitive ability, and the ability to occupy vacant niches
(Elton, 1958). Since Elton’s work, there has been intense inter-
est in understanding what makes a plant species ‘invasive’.
Baker (1965) identified a suite of plant traits that an ‘ideal
weed’ might possess, and postulated that weedy plant
species have combinations of advantageous traits that could
explain variation in invasiveness. He did not address species
impacts per se. Growing awareness of non-native plant inva-
sions and their potential impacts prompted new efforts to iden-
tify plant traits of widely abundant invaders (e.g. Rejmánek
and Richardson, 1996; Reichard and Hamilton, 1997;

Rejmánek, 2000; Grotkopp et al., 2002; Rejmánek et al.,
2005a; Richardson and Pyšek, 2006; Herron et al., 2007).
This research was driven by a desire to understand controls
over invasion success and improve risk assessment and
habitat management. However, it did not specifically recognize
the difference between traits affecting invasiveness versus
those affecting impact.

Recently, the term ‘functional trait’ has been broadly
applied to analyses of species traits, and the meaning of the
term has varied when applied across scales of ecological or-
ganization. Some researchers propose that the use of the
term be restricted to attributes of individual plants without ref-
erence to the environment or other levels of ecological organ-
ization (Violle et al., 2007). Because we are specifically
interested in characterizing response to novel and changing
environments, for our purposes, functional plant traits are the
readily measurable morphological, chemical, physiological
and phenological attributes of plants that interact with sur-
rounding biotic and abiotic factors. Thus, within bounds,
their expression is expected to change with the environment.
Given this context, we use the phrase ‘functional trait frame-
work’ to describe conceptual linkages among functional
traits and biological, ecological and evolutionary processes
involved in the invasion of non-native plants.

Functional traits have been viewed and defined in various
ways. Some studies have emphasized that variation in individ-
ual plant traits can take the form of a continuous range rather
than discrete classes (Chapin et al., 1996). ‘Discrete’ plant
traits are typically qualitative individual traits that are strongly
related to phylogeny (e.g. eudicot/monocot, N-fixer/not), while
‘continuous’ traits [e.g. specific leaf area (SLA), leaf life span,
seed size, photosynthetic capacity] are attributes that all
species have and can be quantified on a continuum even if
varying widely among species (Chapin et al., 1996; Reich
et al., 2003). Other works have differentiated plant functional
traits based on their ease of measurement. ‘Hard’ plant traits
are those that directly influence plant function yet are difficult
or time-consuming to measure in experimental time [e.g. dis-
persal distance, relative growth rate (RGR), competitive effect
and response], whereas ‘soft traits’ are more readily quantifi-
able (Weiher et al., 1999). Perhaps the most commonly
reported soft trait is leaf mass per unit area (LMA) or its
inverse, SLA, which correlates with RGR (Lambers and
Poorter, 1992), photosynthetic rate (Wright et al., 2004), leaf
nitrogen (N) content (Reich et al., 1997) and leaf lifespan
(Westoby et al., 2002), and is thought to be the most useful
single indicator of leaf strategy (i.e. the ecological trade-off
between resource capture and resource conservation).
However, given the diversity of taxa and life forms that have
become invasive, as well as the variety of ecosystems that
have been invaded, expecting one trait to be a universal pre-
dictor of invasive potential is unrealistic (Grotkopp et al.,
2010). Additionally, soft traits may not be suitable analogues
for hard traits at the community level or in restoration practice
(Grotkopp et al., 2010; Kooyman et al., 2010; Leishman et al.,
2010). Multiple, mechanistic pathways link soft and hard traits,
and some relationships may be more or less important in dif-
ferent species or environmental conditions. For example,
both physiological and morphological traits influence RGR,
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which will be high in a rapidly growing and spreading invader.
Although the soft trait SLA is often a strong predictor of RGR
in invasive species (e.g. Grotkopp and Rejmánek, 2007; James
and Drenovsky, 2007), for some species, the physiological
component, net assimilation rate is a stronger predictor of
RGR (Grotkopp et al., 2010). Additionally, traits that are ad-
vantageous in resource-rich environments (e.g. less dense,
poorly defended tissues) may be disadvantageous for plants in-
vading resource-poor environments where slow growth and
tissue retention are important (Berendse, 1994).

Recognition of the link between functional traits and pro-
cesses across multiple ecological scales (e.g. fitness, commu-
nity assembly, ecosystem function) has prompted a surge of
research to improve trait-based approaches (e.g. Lavorel and
Garnier, 2002; Violle et al., 2007). Early attempts to predict
large-scale plant community responses to global environmen-
tal change were based on how individual plants responded to
environmental factors, and plant traits were integrated as key
filters in community assembly models (Woodward and
Cramer, 1991; Keddy, 1992; Woodward and Diament, 1996).
Suites or syndromes of plant traits (e.g. slow tissue turnover,
low transpiration rates, high root mass ratio, high concentra-
tions of secondary metabolites) also were correlated with
responses to variation in limiting resources (Chapin et al.,
1993). Several contributions then turned the focus more specif-
ically to multiple plant ‘effect traits’, which can alter commu-
nity and ecosystem responses to environmental change
(Chapin et al., 2000; Chapin, 2003; Mack and D’Antonio,
2003; Eviner and Chapin, 2003). Many ‘effect’ traits (Dı́az
and Cabido, 2001) correspond with ecosystem processes
such as primary productivity, nutrient cycling and trophic
transfer. For example, LMA, leaf N content, and leaf area
ratio affect primary productivity while phenology and litter
quality affect nutrient cycling rates (Funk et al., 2008).
Some traits may be both ‘response’ and ‘effect’ traits. For
example, low LMA may reflect the ability of a plant to
respond rapidly to enhanced resource availability while also
creating particular effects on primary productivity and nutrient
cycling. The trait-based effects on ecosystem-level processes
have been sufficiently documented to be incorporated into
global models (Chapin, 2003; Dı́az et al., 2004) and have sup-
ported a move to frameworks which link response and effect
traits with species interactions to predict global-change
impacts (e.g. Lavorel and Garnier, 2002; Suding et al., 2008).

Based on this body of previous work we recognize the im-
portance of differentiating effect traits from response traits
(i.e. traits that are considered to only respond to the abiotic
or biotic environment) at multiple scales of invasion and eco-
logical organization. We accept a broad definition of plant
functional trait to include any attribute that responds to
biotic or abiotic factors (such as resource availability, disturb-
ance or herbivore pressure) as well as traits that influence eco-
system processes (such as primary productivity, nutrient
cycling and trophic transfer). Although some authors consider
functional traits only at an individual plant level, we argue that
some plant traits are measurable properties that can be scaled
to populations, communities or ecosystems (e.g. Vile et al.,
2006; Shipley, 2010). Therefore, our definition encapsulates
all of these levels, and provides a broad perspective for

understanding how non-native plant species respond to and in-
fluence the ecosystems they invade.

FLEXIBLE TRAITS: THE ROLE
OF PHENOTYPIC PLASTICITY

Phenotypic plasticity is the ability of a particular genotype to
express a range of phenotypes across different environments
(Bradshaw, 1965), which may be adaptive (Dudley and
Schmitt, 1996; van Kleunen and Fischer, 2005; Richards
et al., 2006). The plasticity of key functional traits may be par-
ticularly beneficial during the invasion process and to all
plants facing a changing climate (Baker, 1965; Richards
et al., 2006; Nicotra et al., 2010). Typically, during the inva-
sion process only a few individuals or even one genotype are
responsible for establishing a population. Theory predicts
that the genetic bottleneck caused by this colonization
process limits a species’ phenotypic options and therefore
the potential for evolution by natural selection.

Despite these expected limitations, many invasive species
succeed in novel locations with low levels of genetic variation
(Hollingsworth and Bailey, 2000; Dlugosch and Parker, 2008a,
b; Richards et al., 2008; Loomis and Fishman, 2009; Zhang
et al., 2010). In a review of 80 introduced plant, animal and
fungal species, the average loss of molecular-level diversity
from the native range to the introduced range was found to
be substantial (Dlugosch and Parker, 2008a). However, most
ecologically important traits are quantitative traits under the
control of many genes and, in contrast to the molecular
studies, Dlugosch and Parker found only one published study
that reported a substantial decline in quantitative trait variation
in the new range (Simberloff et al., 2000). This suggests that
decreased genotypic variation in introduced populations may
not necessarily translate into reduced phenotypic variation.
One limitation is that few studies have compared variation in
quantitative traits between the native and introduced range
(Dlugosch and Parker, 2008a). Given the central importance
of functional and life-history traits in shaping invasion
success and impact, we argue that this is a major gap in our
understanding of how traits and their variation will influence
invasions.

Due to the low level of genotypic diversity in many invad-
ing species, several authors have suggested that phenotypic
plasticity could be an important source of the phenotypic vari-
ation seen in introduced populations. Phenotypic plasticity
enhances niche breadth (Bradshaw, 1965; Van Valen, 1965;
Donohue et al., 2001; Sultan, 2001; Richards et al., 2005),
and therefore it logically follows that plasticity may enable
invaders to succeed under novel conditions without large
amounts of DNA sequence-based diversity. In a recent
meta-analysis of 75 phylogenetically related species pairs,
plant species classified as ‘invasive’ were more plastic in a
wide variety of morphological and physiological traits than
native, non-invasive species (Davidson et al., 2011). This
greater plasticity could indicate either that (a) inherently
more plastic species are more likely to be successful invaders
or (b) that plastic genotypes within species were selected
during the invasion process (Donohue et al., 2001; Etterson,
2004; Yeh and Price, 2004; Kaufman and Smouse, 2001;
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Sexton et al., 2002; Parker et al., 2003). Carefully designed
comparative studies are required to tease apart these different
scenarios, which may vary with species and environment
(Richards et al., 2006; van Kleunen et al., 2010a).

As with any other trait, in order for phenotypic plasticity to
be important in invasions, it must be related to fitness
(Richards et al., 2006). Three theoretical frameworks have
been proposed for phenotypically plastic invasive species
(Baker, 1965; Richards et al., 2006). In the first case, invaders
maintain high fitness across a wide range of environments due
to morphological and physiological plasticity, akin to the
‘general purpose genotype’ (Baker, 1965) or fitness homeosta-
sis (Hoffman and Parsons, 1991; Rejmánek, 2000). In the
second case, compared with other resident plant species, the
most successful invaders are better able to take advantage
of, and have greater increase in, fitness in favourable environ-
ments, due to morphological and physiological plasticity,
while persisting under less than optimal conditions (Sultan,
2001). Further, the third case would be an ‘ideal weed’
(sensu Baker, 1965), which would combine these two strat-
egies and be able to maintain fitness across a broad range of
environments but also be able to opportunistically take advan-
tage of favourable environments by increasing fitness. In the
context of environmental change, predicting and understand-
ing the plasticity of invasive species under these different
scenarios has important implications for management and res-
toration. If many individuals of the invading population are
able to maintain high fitness, invader abundance and therefore
impact should increase. However, if invasive species are only
able to maintain high fitness under specific environmental con-
ditions, their impacts may be more spatially or temporally
limited.

While these predictions make intuitive sense, a recent
meta-analysis of 45 native/invasive species pairs demonstrated
convincingly that while invaders expressed higher plasticity,
they did not have higher fitness in response to increased
resources (Davidson et al., 2011). When resources were
limited, the invasive species were also more plastic but the
natives maintained greater fitness in 16 species pairs. Thus,
these data suggest that increased phenotypic plasticity may
not always translate into greater fitness and therefore may
not always account for invasive species success. While pheno-
typic plasticity of key invader traits may be observed and
quantified, our knowledge of its role in the invasion process
under field conditions is limited (Hulme, 2008). In particular,
there is a need for improved understanding of plasticity’s role
in dispersal, colonization, persistence and abundance (Hulme,
2008), especially as it relates to our ability to predict how
species and communities will respond to changing environ-
mental conditions (Suding et al., 2008). Because of phenotyp-
ic plasticity, levels of phenotypic variation within-species can
be as large as between species (Jung et al., 2010). There may
also be species-specific limits to plasticity; e.g. modelling
studies suggest that some plants have limited capacity to
alter leaf stomatal conductance in response to rising atmos-
pheric CO2 (de Boer et al., 2011). Therefore, the complexities
of understanding phenotypic plasticity can complicate scaling
up species-level processes to higher levels of ecological organ-
ization (Nicotra et al., 2010). These knowledge gaps surround-
ing the plasticity of functional traits can complicate assessment

of plant species impacts on communities and ecosystems, par-
ticularly from a management perspective.

While the contribution of plasticity to the invasion process
is not well understood, studies have shown that plasticity is
genetically based and therefore can evolve like other traits.
More recently, several authors have argued that in addition
to DNA sequence-based differences in phenotype and pheno-
typic plasticity, epigenetic effects (i.e. DNA methylation,
histone modification, small interfering RNA) also can contrib-
ute to ecologically important phenotypic differences (Rapp
and Wendell, 2005; Richards, 2008; Bossdorf et al., 2008,
2010; Johannes et al., 2009; Jablonka and Raz, 2009;
Richards et al., 2010a, b). Epigenetic effects can be especially
active in response to hybridization and exposure to stressful or
novel environments (Rapp and Wendel, 2005; Salmon et al.,
2005; Chinnusamy and Zhu, 2009; Verhoeven et al., 2010),
which are circumstances often experienced by invasive
plants. Because epigenetic changes can be elicited by environ-
mental factors and are stably inherited, they supply a potential-
ly rapid mechanism for the inheritance of plastic responses
(Bossdorf et al., 2008; Richards et al., 2010a, b). Richards
et al. (2008) provide evidence for this possibility in Fallopia
japonica populations that have invaded a diversity of habitats
with high levels of phenotypic variation that persists in
common garden. Across populations, they found almost no se-
quence variation, but using methylation-sensitive AFLP (amp-
lified fragment length polymorphism), Richards and
colleagues showed that these populations harbour five times
as many polymorphic epigenetic loci as DNA sequence loci
(C. L. Richards et al., unpubl. res.). Bottleneck effects com-
bined with epigenetic effects can lead to divergent phenotypes
in invasive populations even in the absence of abundant
sequence-based variation (Keller and Taylor, 2008; Prentis
et al., 2008). Thus, there is a need for invasion studies specifically
designed to tease apart the various components of phenotypic
variance, which will, in turn, enhance our general understanding
of adaptation processes.

EVALUATING PLANT TRAITS: THE
DEMOGRAPHIC PERSPECTIVE

While the average response and plasticity of functional traits
are clearly important for the success of individuals within a
population, they also contribute directly to the demographic
rates that ultimately determine population persistence or
failure in changing environments. Detailed demographic ana-
lysis incorporates the relationship between particular traits or
life history attributes and plant fitness, and goes a step
further to link plant performance to population abundance.
Invasive species have specific combinations of traits that
allow them to succeed through dispersal, colonization and ex-
pansion phases of the invasion process and, in some cases, to
competitively displace resident species in the novel environ-
ment. By linking functional traits (e.g. lifespan, fecundity)
with the tools of population modelling, we have a quantitative
way to assess the ecological importance of different traits from
a demographic perspective.

Population models integrate demographic rates across the
life cycle, providing information on the growth rates and dy-
namics of populations (Caswell, 2001). Density-independent
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models, such as most matrix population models, have been
used to explore population growth rates of invasive plants
and how they respond to environmental variation (e.g.
Shea and Kelly, 1998; Parker, 2000; Jacquemyn et al., 2005;
Koop and Horvitz, 2005; Hyatt and Araki, 2006; Sebert-
Cuvillier et al., 2007; Engelen and Santos, 2009; Griffith,
2010). Density-dependent models, in which the number of
plants recruiting into the population is limited by an environ-
mental carrying capacity, are needed for any investigations
that focus not on rates of spread, but on the final abundance
reached by an invader (Sheppard et al., 2002; Buckley et al.,
2004), which may be strongly tied to the impacts of the
invader (i.e. at lower abundance, impacts may be less
severe). Lastly, matrix population models that are spatially ex-
plicit (Neubert and Caswell, 2000) can be used to integrate
data on functional traits related to dispersal with demographic
traits to investigate how each of these sources of variation can
influence invasion (Neubert and Parker, 2004; Buckley et al.,
2005; Jongejans et al., 2008).

Of the many demographic analyses, perturbation analysis
(elasticity and sensitivity analyses) readily lends itself to
making the link between functional traits and population
growth, abundance or spatial spread in the context of environ-
mental change. Perturbation analysis indicates how population
growth responds to small changes in each of the transitions
throughout the life cycle (i.e. the relative importance of each
transition to population growth). Perturbation analysis has
been used effectively to address management questions for in-
vasive plants. Ideally, perturbation analysis can be used to
search for an ‘Achilles’ heel’ of the invader (sensu Parker,
2000): if population growth rate is highly sensitive to one
demographic transition or vital rate, that life stage could be
the target of management efforts. Although a single vulnerable
life stage is rarely found, population models have been very
useful tools for assessing the potential or realized effectiveness
of management, especially the introduction of biological
control agents (e.g. Shea and Kelly, 1998; Paynter, 2005;
Davis et al., 2006; DeWalt, 2006; Schutzenhofer and Knight,
2007; Paynter et al., 2010). These approaches can provide
insight into how ecological complexity, such as variation in
time and space in environmental conditions or biotic interac-
tions, can influence the relative importance of different parts
of the life cycle (e.g. Shea et al., 2005; DeWalt, 2006). For
example, Prevey et al. (2010) found that the relative contribution
of annual and biennial life histories to population growth in
Tragopogon dubius changed in response to rain manipulations.

In the same way, these modelling approaches can provide
insight into the relative importance of different functional
traits or of the same trait expressed at different times of the
life cycle. For example, a demographic model might reveal
that population growth is much more sensitive to seedling
growth rate than it is to adult growth rate. In this case, RGR
at the seedling stage would be a more important functional
trait than RGR at the adult phase. A study of the same
species under conditions of climate warming might show
that seed survival during dormancy and, therefore, seed
defence traits, suddenly becomes the most important factor in-
fluencing population growth under projected future conditions.

In addition to the ‘prospective’ perturbation analyses we
have just discussed, one may also break down observed

patterns of variation in population growth, calculating the rela-
tive importance of different life stage transitions to these pat-
terns, using ‘retrospective’ perturbation analysis such as life
table response experiments (LTRE) (Caswell, 2000). This
tool allows us to evaluate the population-level consequences
of observed differences in functional traits among sites,
years or management approaches. For example, the shrub
Cytisus scoparius invaded native prairie sites more rapidly
than disturbed urban fields (Parker, 2000). While many life-
cycle transitions were substantially different between the two
habitats, LTRE analysis revealed that early establishment
was by far the most important factor driving observed differ-
ences in invasion rates of C. scoparius. This information
could inform future studies on functional traits most likely to
influence the early establishment stage, such as germination
behaviour or drought tolerance of seedlings. Thus, by linking
demography to environmental conditions, a more targeted ap-
proach to functional trait studies can be pursued.

While a lengthy discussion of caveats is not within the scope
of this review, we will mention that traditional sensitivity ana-
lysis as applied to matrix population models (as well as LTRE
analysis) assumes a stable stage distribution (i.e. the relative
proportions of individuals in different life stages stay the
same and produce the same overall rate of population growth
from year to year). In fact, however, a newly invading popula-
tion may not usually be at the stable stage distribution.
Therefore, analyses of transient dynamics may be important
for invasive plants and may sometimes provide a quantitatively
different view from traditional sensitivity analyses (McMahon
and Metcalf, 2008).

UNTANGLING TRAITS ASSOCIATED
WITH ECOLOGICAL IMPACTS

Demographic processes, and traits there associated, link to in-
vasion rates and plant abundance, which ultimately influence
plant impacts at community and ecosystem scales. Risk assess-
ment protocols are typically used to categorize invasive plants
according to their potential impacts (Randall et al., 2008). Traits
leading specifically to impacts should thus be a key part of risk
assessment modelling. For example, in California, only 132 of
the .1800 naturalized plant species are considered to have
measurable community and ecosystem impacts in wildland set-
tings (www.cal-ipc.org) and only 38 of these are listed as having
‘severe’ or ‘high’ impacts. The traits defining these different
groups of non-native plants have not been comprehensively
assessed. An understanding of which traits lead to the different
types and levels of impact is at the heart of prioritizing invasive
species for control and management.

Over the past three decades, several reviews of invasive
plant impacts have been conducted, spanning the range from
population to ecosystem impacts (e.g. D’Antonio and
Vitousek, 1992; Daehler and Strong, 1993; Ehrenfeld, 2003,
2006, 2010; Levine et al., 2003; Vilá et al., 2011). Yet, com-
pared with our understanding of which traits allow a species to
become invasive, our understanding of traits related to species
impacts is fragmentary (Levine et al., 2003; Rejmanék et al.,
2005b) and case specific, such as the well-studied case of
species effects on N accumulation and cycling (e.g. Vitousek
et al., 1987; D’Antonio and Corbin, 2003; Ehrenfeld, 2003;
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Hughes and Denslow, 2005). This is in part because most
studies that evaluate traits of invaders compared with resident
or native species or non-invasive congeners focus on traits that
affect invasiveness and not impact per se (e.g. van Kleunen
et al., 2010b). A challenge to devising a framework for pre-
dicting plant impact traits lies in the concept and definition
of ‘impact’ itself, as there is no one definition or agreement
on level at which the effects of an individual or group of indi-
viduals becomes an impact of concern. A single plant can have
multiple effects on the environment immediately around it.
These effects are due to both the capture of resources by the
individual and the presence and activity of the individual
itself. For example, individual plants deplete nutrients immedi-
ately in their rooting zone but also enhance nutrient availabil-
ity by exuding carbon, which promotes microbial breakdown
of soil organic matter outside of the root. These effects are
not necessarily measurable at a scale that is important to
plant community dynamics: they are per capita effects of the
individual, but they do not by themselves create an impact.
At the scale that managers care about, plant impact is a func-
tion of both per capita effects from the traits that cause them
and the cumulative abundance of individuals of that species
in the environment, particularly relative to other species.
This conceptualization of impact was proposed by Parker
et al. (1999) when they suggested that a universal definition
of a species impact was I ¼ A × R × E, where A ¼ abun-
dance, R ¼ range and E ¼ per capita effects. In this equation
both A and R are representative of abundance but at different
scales (local versus regional or national), and they reflect an
interaction of demographic plant traits with the environment.
In terms of response or effect traits, species traits associated
with A and R are most likely response traits. E or per capita
effects, on the other hand, represents morphological, physio-
logical and chemical interactions of the plant and its attributes
with its environment and most likely represent E traits that dir-
ectly affect the environment and indirectly influence fitness.

Critical to this discussion is the distinction between ‘inva-
siveness’ and ‘impacts’. There are many naturalized species
that once introduced, have spread quite broadly, yet they
have very little measurable impact (Richardson et al., 2000).
These are typically not well studied because of their lack of
impact, but examples might include widespread forbs in
North America such as Senecio vulgaris, Stellaria media or
Erodium species that can be locally abundant but do not
appear on noxious or wildland weed lists, or Cakile edentula,
a fast-spreading non-native plant that became widespread
quickly but is not very competitive (Boyd and Barbour,
1993). Although these species have traits that promote high
population growth and spread (demographic traits), their per
capita effects are low. Conversely, some species may have a
limited ability to spread across the environment but they
have large effects on their immediate environment. For
example, Eucalyptus globulus in California does not spread
rapidly, yet each individual plant deposits large amounts of
chemically rich litter, thus potentially creating a large local
impact on the understorey environment (personal observation
of the authors, and see Sax, 2002). This species is on the ‘mod-
erate impacts’ list of the California Invasive Plant Council’s
list because of the recognition of its generally slow spread.
Thus, the Parker et al. (1999) framework is useful in clarifying

the difference between an ‘effect’ and an ‘impact’ and between
traits associated with abundance and ‘invasiveness’ versus
those associated with per capita effects. Additionally, this
framework demonstrates that invasiveness is important to
impact severity because it is related to local and regional abun-
dance. However, invasiveness is not equivalent to impact. This
has been recognized recently for animal species as well: in a
review, Ricciardi and Cohen (2007) found little relationship
between ‘invasiveness’ and ‘impacts’ for a range of verte-
brates. Likewise, invasiveness is not the same as local and re-
gional abundance, which has more to do with carrying capacity
than with spread. A species might be slow-growing and slow
spreading, but within a 200-year time frame (without active
control/management) could fill the same space as a species
with a much higher population growth rate. Ultimately the one
with a bigger carrying capacity will have the bigger impact, all
E traits being equal.

Similarly, controls over population growth of an invader are
not the same as controls over its impacts. For example,
Carpobrotus edulis, a succulent, mat-forming perennial plant
introduced to California from South Africa, spreads most
rapidly in dune and back-dune habitats in California
(D’Antonio, 1993; Molinari et al., 2007). Its spread into adja-
cent coastal shrublands is slow due to intense and persistent
herbivory by native vertebrate herbivores (D’Antonio, 1993).
Nonetheless, on a per individual basis, its per capita effects
(E) are higher in the shrublands than in the dunes
(D’Antonio, 1990; Molinari et al., 2007). In the former, it
reduces soil pH, overgrows and diminishes native species
(D’Antonio and Mahall, 1991) and creates much more litter
accumulation at the soil surface (Molinari et al., 2007). Its
per capita effects in the nearby back dune are much less re-
markable and native species there appear better at coexisting
with it than they are in the shrubland. This example highlights
the context dependency of E traits and overall impact for a
single invader species as well as the ways in which traits
affecting population growth and spread interact with E traits
to create impact.

An additional challenge to developing a framework for pre-
dicting impact is that there are many different types of mea-
sured or purported impacts, so a wide range of traits should
be expected to create impact. These impacts can vary in mag-
nitude and duration and may arise through indirect effects of
traits, so there is no simple metric for comparing them. One
example, yellow star thistle, Centaurea solstitialis, has been
purported to reduce rangeland productivity, reduce deep soil
water storage (Gerlach, 2004; Enloe et al., 2004) and reduce
native species diversity (www.cal-ipc.org). The latter impact
has not been substantiated but is nonetheless cited as a
prime concern to land managers. These three impacts span
from economic impacts (productivity of rangeland for live-
stock production), to impacts on an ecosystem process and re-
source pool (water), to community-scale effects (biodiversity).
While such distinctions may be disappearing at the manage-
ment scale as ecosystem services become monetized (e.g.
Kobayashi et al., 2010), mechanistically from a trait perspec-
tive they are distinct: each impact presumably arises because
of a different suite of plant traits. Spines (a morphological
trait), for example, make the plant unpalatable, thereby redu-
cing forage quality, while a deep taproot (unrelated to
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spines), can access water below the rooting zone of co-
occurring grasses and more shallowly rooted forbs, thus redu-
cing deep soil-water storage.

Likewise, impacts of concern such as fire risk in arid and semi-
arid ecosystems (e.g. D’Antonio and Vitousek, 1992) can arise
through multiple different trait pathways. For example, in
Hawaiian dry forests, traits associated with drought tolerance
and shallow soil summer water uptake have allowed invasive
African grasses to reduce the productivity of native forest
species thus indirectly increasing fire risk and threatening the
loss of native species (Cordell and Sandquist, 2008). In the
Great Basin (western USA), the ability of the annual grass
Bromus tectorum to germinate abundantly in wet years and
create a continuous fuel bed directly increases ignition probabil-
ity and thus fire risk (e.g. Whisenant, 1990). While the common
functional trait here is plant fuel class (abundant ‘fine fuel’), the
means through which the impact (fire) is created relies on differ-
ent hard trait combinations and pathways.

The pathways through which the impacts of plant invaders on
biodiversity arise are generally poorly understood, despite this
being an important concern of managers. Although there are
examples of species-specific or site-specific ties between func-
tional traits and reduced native species diversity, such as when
ignitable non-native grasses described above reduce native di-
versity by fueling destructive wildfires (e.g. Whisenant, 1990;
Hughes et al., 1991), generalized patterns across invader taxa
and systems remain elusive. This is true even within a single
functional group of invaders. For example, invasive N fixers
have traits (e.g. high seed production and persistent seed
banks, rapid growth via N-fixation) that promote high population
abundance as well as having large impacts on nutrient cycling
(e.g. Vitousek et al., 1987; Vitousek and Walker, 1989). These
traits may be linked to the suppression of native vegetation via
rapid growth and shading or direct facilitation of other
fast-growing invaders (e.g. Hughes and Denslow, 2005), but
cross-site and cross continental research highlights the variabil-
ity of these impacts and the need for a thorough understanding of
multiple traits that interplay to drive both invasion and impact
(Stock et al., 1995; Yelenik et al., 2007; Le Maitre et al.,
2011; Morris et al., 2011).

Traits related to one clearly defined type of impact are easier
to identify than trait syndromes that lead to multiple conse-
quences in the invaded environment. However, from an
applied perspective, those traits and their associated impacts
that are easy to identify may not be the same as those that
are of management concern. Invaders that affect N cycling,
for example, are presumed to enhance it through the creation
of low carbon-cost leaves that decompose readily (e.g.
Vitousek and Walker, 1989; Baruch and Goldstein, 1999;
Ehrenfeld, 2003; Allison and Vitousek, 2004; Liao et al.,
2008). Yet, for many managers nutrient cycling is not the
impact of concern, particularly if the invader is not associated
with increased N pool sizes (such as with N-fixing invaders). If
the impact of concern is ‘reductions in native species’, then we
need to identify a mechanistic link (e.g. Cordell and Sandquist,
2008). For N cycling, we must understand how rapidly decom-
posing leaves may lead to growth inhibition of native species.
Traits associated with more rapid decomposition (e.g. low
lignin : N and C : N ratios) are typically associated with fast
growth and low LMA. Yet, these traits may not be associated

with long-term persistence and hence long-term impacts,
unless the initial high N cycling invader creates a strong posi-
tive feedback or promotes other invaders that in turn replace or
keep out native species (e.g. Hughes and Denslow, 2005).
Such positive feedbacks have been hypothesized about for
decades, but their existence and importance are poorly demon-
strated in the field (Ehrenfeld et al., 2005). Thus, the direct
impacts of a fast-growing, high leaf N invader (that is not an
N fixer) may in reality be short lived, while long-term
impacts will depend on whether other undesirable species
are enhanced by the original invader or whether natives can
return to the site as the initially fast-growing species declines.

The key points are that (a) impacts for any given species
arise due to a combination of traits that reflect per capita
effects and that influence invader abundance, and (b) the
trait syndromes of importance will depend on the type of
impact evaluated as well as the time frame. Thus, a framework
for predicting impacts based on plant traits will be most robust
when specific impacts are identified, mechanistic links can be
elucidated and compared, and when an understanding of time-
scale is included. Traits that lead to reduced native biodiversity
will prove to be more complex because there are both direct
and indirect pathways through which invaders create such
impacts. Trait syndromes leading eventually to altered bio-
diversity are thus likely to be system specific and as yet have
not been comprehensively addressed.

MANAGEMENT AND RESTORATION
OF INVADED PLANT COMMUNITIES

IN CHANGING ENVIRONMENTS

We advocate a functional trait framework for restoring plant
communities, as functional traits are critical for predicting
invasive-species spread and impact under different environ-
mental change scenarios and also form the basis for identify-
ing effective strategies for restoring invaded systems.
Additionally, functional traits of invaders and trait distribution
within native plant communities influence invasiveness and in-
vasion resistance and therefore are central drivers of invasive
plant abundance (Mouillot et al., 2007; Scharfy et al., 2011).
As outlined in the previous section, both abundance and per
capita effects of species on their environments influence inva-
sive plant impact. Thus, prediction and management of inva-
sion under future climate-change scenarios, as well as
restoration of invaded systems, requires an understanding of
functional traits that determine invader abundance and
spread and how functional traits drive differences in per
capita effects of species on their environment. In this section
we outline how functional traits influence invasion resistance
and invasive plant impacts. We also identify key knowledge
gaps and discuss limitations and the potential of using func-
tional traits to improve restoration and invasive plant manage-
ment outcomes.

The influence of plant functional traits on invasion resistance
has been a central question in community ecology with imme-
diate practical links to invasive species management (Pokorny
et al., 2005). Initially, this line of work focused on the influence
of species and functional group diversity on invasion resist-
ance. Quantitative synthesis of this research has suggested
that species and functional group diversity may be poor
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predictors of invasion resistance (Wright et al., 2006).
Alternatively, hypotheses based on limiting trait similarity
(MacArthur and Levins, 1967) predict that species with func-
tional traits most similar to the invader will play the largest
role in invasion resistance. In addition, the mass ratio hypoth-
esis proposed by Grime (1998) predicts that ecosystem proper-
ties and processes are not only driven by functional effect traits
of individual species but also by how species abundance is dis-
tributed in the community. Thus, differences in effect traits
among species may not necessarily translate into differences
in how species affect ecosystem properties, such as invasion re-
sistance. For example, James et al. (2008) showed that subdom-
inant species differed from dominant species in their timing and
depth of soil N acquisition. They also found that subdominant
species had patterns of N acquisition that were comparable to
the invasive species, suggesting subordinate species would
play a significant role in invasion resistance. However, when
they weighted species N acquisition by species abundance in
the plant community, dominant species were the main sink
for N, regardless of soil depth or time, and also were the only
species that significantly contributed to invasion resistance.

Thus, to maximize invasion resistance, practitioners need to
consider the functional effect traits of native species relative to
the invader, the diversity of effect traits that can be managed,
as well as species abundance. The first choice for managers
would be to establish and maintain dominant species that
have functional effect traits (e.g. rooting depth, SLA) compar-
able to invaders (Pokorny et al., 2005). From a practical per-
spective, however, the success and impact of many invaders
may be because they differ significantly from the dominant
species in effect traits (e.g. N fixation, phenology, life
history). In these likely more common scenarios, where
no-analogue environments support novel plant community
assemblages, managers may not constrain species selection
to the historically dominant native species pool but may
instead select non-native species that will recover critical eco-
logical functions and inhibit invader spread. In these scenarios,
managers must balance strategies and practices that maximize
invasion resistance but that may compromise other objectives,
such as increasing and maintaining biodiversity (Boyd and
Svejcar, 2009). Thus, while a functional trait approach may
have practical limitations and constraints, it provides a predict-
ive framework for understanding how management decisions
influence changes in plant functional traits, and thus invasive
species spread and impact.

Functional traits also may suggest ways that abiotic factors
(e.g. environmental filters) within a restored system can be
manipulated to favour native plants at the expense of non-native
invaders. Work in a disturbed montane rainforest in Hawaii sug-
gested that the success of light reductions to understorey seed-
lings could be predicted based on a few key leaf-level traits
(LMA, chlorophyll content, light-use efficiency) (Funk and
McDaniel, 2010). These traits could be used to identify helio-
philic invaders as well as shade-tolerant native species for plant-
ing in restored, closed canopies. In another study, the
effectiveness of soil N reductions on reducing invasive
species growth in a desert annual community were linked to
leaf N status and the timing of germination (Steers et al.,
2011). In normal precipitation years, invasive species germinated

weeks before native species and were strongly affected by low
soil N availability, resulting from carbon added to the soil
during the first rain event of the season. However, when the
system received several early-season storms, native and invasive
species germinated simultaneously, and both experienced
reduced growth in response to soil N depletion.

Despite these promising results, there are several significant
knowledge gaps that limit our ability to fully implement a func-
tional trait framework for invasive plant management. One
central challenge to management, and an area of much needed
research, is to understand and predict when and how per capita
effects increase but invasive plant abundance remains the
same or decreases. For example, in many situations per capita
effects increase as abundance increases or per capita effects
decrease as abundance decreases (Chambers et al., 2007).
However, there are also situations in which per capita effects in-
crease while abundance decreases (D’Antonio, 1990; Molinari
et al., 2007).

Second, most of our understanding of functional trait differ-
ences between native and invasive species comes from
established plants and plant communities. For example, a
common question in community assembly research has
focused on the role of SLA (inverse of LMA) in structuring
communities, with the idea that high-SLA (low LMA)
species will be distributed in more resource-rich or less stress-
ful portions of the gradient compared with low-SLA species
(Jung et al., 2010). Traits correlated with differences in assem-
bly, however, are not necessarily traits that cause differences in
assembly. Processes occurring early on, such as dispersal and
establishment are known to play a central role in community
assembly (Grubb, 1977), yet we know comparatively little
about how variations in these functional traits impact commu-
nity assembly and, therefore, plant response to environmental
change. For example, a recent study in shrub steppe systems
showed that the primary driver of species recruitment and
abundance following disturbance was centred on traits that
influenced the probability that germinated seeds emerged
(James et al., 2011). Once seedlings emerged, abundance
changed little. Thus, traits of juvenile and adult plants such
as SLA and the degree to which these traits determine
impact can play a smaller role than traits that directly influ-
enced demography and recruitment.

Third, knowing which combinations of traits and environ-
mental factors result in establishment and spread of a continuum
of native to non-native species is relevant to understanding plant
community assembly and invasion biology (Davis, 2009).
Recognizing how functional trait variation interacts with com-
munity assembly processes may be key to effective invasive
plant management and ecological restoration. Resource conser-
vation traits may place established native plants at a competitive
advantage over invasive plants in resource-poor systems.
However, when both native and invasive species recruit from
the seed bank, greater propagule pressure, early germination,
greater seedling survivorship, and/or faster seedling growth
by invasive species compared with native species may
provide invaders an initial advantage in resource-poor and
resource-rich systems; as a result, a long-term barrier to native
plant recruitment, regardless of initial habitat conditions, may
occur (Von Holle and Simberloff, 2005; DiVittorio et al., 2007;
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Abraham et al., 2009; James et al., 2011). Because many plant
traits influence assembly processes, management of environmen-
tal filters may not result in the community response predicted by
resource-use traits alone.

Functional trait data can serve as a valuable basis for deci-
sion making by practitioners and allow prediction of how
plant communities and land management activities will influ-
ence restoration outcomes and invasion resistance. The predic-
tion of the path that plant communities will follow in
alternative restoration scenarios is a major challenge, but deci-
sion making by practitioners can be improved by adopting a
scientific approach that includes ecological principles that
are often overlooked in the restoration process (Zedler,
2000). The concepts outlined in this paper that use functional
traits to assess per capita effects and impacts of invasive and
native plants make a major advancement towards improved
predictability and decision making. Many new trait databases
are being compiled (e.g. Kattge et al., 2011), which will facili-
tate trait-based approaches to restoration. Land managers have
already employed this type of information to make practical
changes to policy and procedures and to improve restoration
outcomes. For example, in the arid western United States,
managers have seeded over 250 000 ha a year in efforts to re-
habilitate land damaged by catastrophic fire. Historically, there
has been vigorous debate on whether to seed these landscapes
with introduced species that have a high probability of estab-
lishing and preventing spread of invasive species or seeding
landscapes with native species that have a low probability of
establishing and preventing spread of invasive species.
Functional trait data have been very useful in developing a
compromise in this debate and, consequently, improving man-
agement policy decision making. Namely, scientists have iden-
tified functional traits characteristic of introduced plant species
with high rates of establishment and then used this information
to select and grow native accessions that contain these key
traits, resulting in higher native plant seeding success and
improved control of invasive species spread (Jones and
Monaco, 2007; Rowe and Leger, 2011). Overall, the functional
trait framework developed in this paper can improve manage-
ment decision making because it links concepts of functional
trait variation, plasticity and demography to advance under-
standing and prediction of invasive plant impacts. Continued
development of this approach and assessment of how traits
yield impact across multiple-scales is critical as environmental
change forces managers to deal with shifts in species ranges
and plant assembly in novel ecosystems.

CONCLUDING REMARKS

Ultimately, our goal is to understand the factors driving abun-
dance and impacts of invasive species not only under current
conditions, but also in response to environmental change. To
do so, we must be able to link trait-based changes in response
to fluctuating environments to changes in community and eco-
system properties. In order to scale up from organismal-level
traits, research must move beyond the consideration of how
single species or traits are influenced by changing environmen-
tal conditions; instead, changes in abundance and impacts
must be summed across the community as a whole (Suding

et al., 2008). Additionally, few trait-based studies of invasive
species include more than two levels of a given abiotic
factor (Richards et al., 2006), limiting their predictive
power. Therefore, a comprehensive effort must be grounded
in a firm understanding of demographic processes that influ-
ence abundance (Gurevitch et al., 2011), a targeted approach
to identify key functional traits that influence our impacts of
interest (Suding et al., 2008), and inclusion of multiple
levels of environmental drivers (Richards et al., 2006), par-
ticularly under field conditions (Hulme, 2008).

To date, most studies have focused on a subset of major phe-
nomena that define invasions (i.e. rapid population increase, es-
tablishment of local dominance or monocultures, rapid range
expansion, and/or major ecosystem alteration; Gurevitch et al.,
2011), despite early calls for more integrated approaches
(Vitousek, 1990, Schierenbeck et al., 1994). Additionally,
most conceptual frameworks for biological invasions currently
are based on limited supporting evidence, and many are
focused solely on population interactions or community
ecology, excluding the consideration of processes occurring at
multiple ecological scales (Gurevitch et al., 2011). These frame-
works, although they help us understand invasiveness (e.g. van
Kleunen et al., 2010b), do not directly address the impacts of in-
vasive species. From a restoration and management perspective,
both aspects are key to predicting future invasions, managing
current invasions and mitigating species impacts.

We know that plant functional traits influence and impact
key ecosystem processes (Ehrenfeld, 2010). However, our
knowledge of how functional traits scale across levels of eco-
logical organization or spatial and temporal scales is still
limited (Messier et al., 2010), and site-specific relationships
may limit our ability to generalize trait–impact relationships.
Moreover, some species (e.g. ecosystem engineers at high
abundance) may have disproportionate effects on communities
and ecosystems (Vitousek, 1990; Jones et al., 1994). Given
these caveats, large databases compiling functional trait data
across species and biomes (e.g. Kattge et al., 2011) provide
an unprecedented opportunity to investigate questions from a
global perspective and may help disentangle site-specific
effects from global paradigms. Additionally, preliminary
work suggests that community assembly is critically linked
to traits, rather than species units per se, due to environmental
filters selecting for traits conveying success in a given environ-
ment (Messier et al., 2010). Lastly, the problem of dispropor-
tionate impacts stresses the importance of understanding
abundance (i.e. invasiveness) and impacts together.

Anthropogenic-driven environmental change further com-
plicates prediction and management of plant invasions.
However, by explicitly measuring demographic traits, target-
ing specific impacts and their related functional traits, incorp-
orating developing paradigms from large-scale datasets and
meta-analyses, and specifically designing experiments that
allow for multiple environmental change outcomes will
improve our knowledge of the functional traits of invasive
species that (a) promote invasiveness, and (b) convey
impacts across multiple levels of biological and ecological or-
ganization. In turn, this research should improve our ability to
identify and manage invasive species better, as well as design
proper restoration scenarios.

149



ACKNOWLEDGEMENTS

We thank T. Rost and two anonymous reviewers for sugges-
tions that improved our manuscript. We acknowledge the
Ecological Section of the Botanical Society of America for
supporting the symposium that brought us together.

LITERATURE CITED

Abraham JK, Corbin JD, D’Antonio CM. 2009. California native and exotic
perennial grasses differ in their response to soil nitrogen, exotic annual
grass density, and order of emergence. Plant Ecology 201: 445–456.

Allison SD, Vitousek PM. 2004. Rapid nutrient cycling in leaf litter from in-
vasive species in Hawai’i. Oecologia 141: 612–619.

Baker HG. 1965. Characteristics and modes of origin of weeds. In: Baker HG,
Stebbins GL. eds. The genetics of colonizing species. New York, NY:
Academic Press, 147–168.

Baruch Z, Goldstein G. 1999. Leaf construction cost, nutrient concentration,
and net CO2 assimilation of native and invasive species in Hawai’i.
Oecologia 121: 183–192.

Berendse F. 1994. Competition between plant populations at low and high nu-
trient supplies. Oikos 71: 253–260.

de Boer HJ, Lammertsma EI, Wagner-Cremer F, Dilcher DL, Wassen MJ,
Dekker SC. 2011. Climate forcing due to optimization of maximal leaf con-
ductance in subtropical vegetation under rising CO2. Proceeding of the
National Academy of Sciences of the USA 108: 4041–4046.

Bossdorf O, Richards CL, Pigliucci M. 2008. Epigenetics for ecologists.
Ecology Letters 11: 106–115.

Bossdorf O, Arcurri D, Richards CL, Pigliucci M. 2010. Experimental al-
teration of DNA methylation affects the phenotypic plasticity of ecologic-
ally relevant traits in Arabidopsis thaliana. Evolutionary Ecology 24:
541–553.

Boyd CS, Svejcar TJ. 2009. Managing complex problems in rangeland eco-
systems. Rangeland Ecology & Management 62: 491–499.

Boyd RS, Barbour MJ. 1993. Replacement of Cakile edentula by
C. maritima in the strand habitat of California. American Midland
Naturalist 130: 209–228.

Bradshaw AD. 1965. Evolutionary significance of phenotypic plasticity in
plants. Advances in Genetics 13: 115–155.

Buckley YM, Rees M, Paynter Q, Lonsdale M. 2004. Modelling integrated
weed management of an invasive shrub in tropical Australia. Journal of
Applied Ecology 41: 547–560.

Buckley YM, Brockerhoff E, Langer L, Ledgard N, North H, Rees M.
2005. Slowing down a pine invasion despite uncertainty in demography
and dispersal. Journal of Applied Ecology 42: 1020–1030.

Caswell H. 2000. Prospective and retrospective perturbation analyses: their
roles in conservation biology. Ecology 81: 619–627.

Caswell H. 2001. Matrix population models: construction, analysis, and inter-
pretation, 2nd edn. Sunderland, MA: Sinauer Associates.

Chambers JC, Meyer SE, Whittaker A, Roundy BA, Blank RR. 2007.
What makes Great Basin sagebrush ecosystems invasible by Bromus tec-
torum? Ecological Monographs 77: 117–145.

Chapin FSIII. 2003. Effects of plant traits on ecosystem and regional pro-
cesses: a conceptual framework for predicting the consequences of
global change. Annals of Botany 91: 455–463.

Chapin FSIII, Autumn K, Pugnaire F. 1993. Evolution of suites of traits in
response to environmental stress. American Naturalist 142: S78–S92.

Chapin FS, Reynolds H, D’Antonio CM, Eckhart V. 1996. The functional
role of species in terrestrial ecosystems. In: Walker B, Steffen W. eds.
Global change in terrestrial ecosystems. Cambridge: Cambridge
University Press, 403–428.

Chapin FSIII, Zavaleta ES, Eviner VT, et al. 2000. Consequences of chan-
ging biotic diversity. Nature 405: 234–242.

Chinnusamy V, Zhu JK. 2009. Epigenetic regulation of stress responses in
plants. Current Opinion in Plant Biology 12: 133–139.

Cordell S, Sandquist DR. 2008. The impact of an invasive African bunch-
grass (Pennisetum setaceum) on water availability and productivity of
canopy trees within a tropical dry forest in Hawaii. Functional Ecology
22: 1008–1017.

Davis MA. 2009. Invasion biology Oxford: Oxford University Press.

Daehler CC. 2003. Performance comparisons of co-occurring native and alien
invasive plants: implications for conservation and restoration. Annual
Review of Ecology, Evolution and Systematics 34: 183–211.

Daehler CC, Strong DR. 1993. Prediction and biological invasions. Trends in
Ecology and Evolution 8: 380–381.

D’Antonio CM. 1990. Seed production and dispersal in the non-native, inva-
sive succulent Carpobrotus edulis in coastal strand communities of
central California. Journal of Applied Ecology 27: 693–702.

D’Antonio CM. 1993. Mechanisms controlling invasion of coastal plant com-
munities by the alien succulent, Carpobrotus edulis. Ecology 74: 83–95.

D’Antonio CM, Corbin JD. 2003. Effects of plant invaders on nutrient
cycling: using models to explore the link between invasion and develop-
ment of species effects. In: Canham CD, Cole JJ, Lauenroth WK. eds.
Models in ecosystem science. Princeton, NJ: Princeton University Press,
363–384.

D’Antonio CM, Mahall BE. 1991. Root profiles and competition between the
invasive, exotic perennial, Carpobrotus edulis, and two native shrub
species in California coastal scrub. American Journal of Botany 78:
885–894.

D’Antonio CM, Vitousek PM. 1992. Biological invasions by exotic grasses,
the grass-fire cycle and global change. Annual Review of Ecology and
Systematics 23: 63–88.

Darwin C. 1859. On the origin of species. London: John Murray.

Davis AS, Landis DA, Nuzzo V, Blossey B, Gerber E, Hinz HL. 2006.
Demographic models inform selection of biocontrol agents for garlic
mustard (Alliaria petiolata). Ecological Applications 16: 2399–2410.

Davidson AM, Jennions M, Nicotra AB. 2011. Do invasive species show
higher phenotypic plasticity than native species and, if so, is it adaptive?
A meta-analysis. Ecology Letters 14: 419–431.

DeWalt SJ. 2006. Population dynamics and potential for biological control
of an exotic invasive shrub in Hawaiian rainforests. Biological
Invasions 8: 1145–1158.

Dı́az S, Cabido M. 2001. Vive la difference: plant functional diversity matters
to ecosystem processes. Trends in Ecology and Evolution 16: 646–655.

Dı́az S, Hodgson JG, Thompson K, et al. 2004. The plant traits that drive
ecosystems: evidence from three continents. Journal of Vegetation
Science 15: 295–304.

DiVittorio CT, Corbin JD, D’Antonio CM. 2007. Spatial and temporal pat-
terns of seed dispersal: an important determinant of grassland invasion.
Ecological Applications 17: 311–316.

Dlugosch KM, Parker IM. 2008a. Founding events in species invasions:
genetic variation, adaptive evolution, and the role of multiple introduc-
tions. Molecular Ecology 17: 431–449.

Dlugosch KM, Parker IM. 2008b. Invading populations of an ornamental
shrub show rapid life history evolution despite genetic bottlenecks.
Ecology Letters 11: 701–709.

Donohue K, Pyle EH, Messiqua D, Heschel MS, Schmitt J. 2001. Adaptive
divergence in plasticity in natural populations of Impatiens capensis and
its consequences for performance in novel habitats. Evolution 55:
692–702.

Dudley SA, Schmitt J. 1996. Testing the adaptive plasticity hypothesis:
density-dependent selection on manipulated stem length in Impatiens
capensis. American Naturalist 147: 445–465.

Ehrenfeld JG. 2003. Effects of exotic plant invasions on soil nutrient cycling
processes. Ecosystems 6: 503–523.

Ehrenfeld JG. 2006. A potential novel source of information for screening
and monitoring the impact of exotic plants on ecosystems. Biological
Invasions 8: 1511–1521.

Ehrenfeld JG. 2010. Ecosystem consequences of biological invasions. Annual
Reviews of Ecology Evolution and Systematics 41: 59–80.

Ehrenfeld JG, Ravit B, Elgersma K. 2005. Feedback in the plant-soil system.
Annual Reviews of Environment and Resources 30: 75–115.

Elton CS. 1958. The ecology of invasions by animals and plants. London:
Methuen.

Engelen A, Santos R. 2009. Which demographic traits determine population
growth in the invasive brown seaweed Sargassum muticum? Journal of
Ecology 97: 675–684.

Enloe SF, DiTomaso JM, Orloff SB, Drake DJ. 2004. Soil water dynamics
differ among rangeland plant communities dominated by yellow starthis-
tle (Centaurea solstitialis), annual grasses, or perennial grasses. Weed
Science 52: 929–935.

150



Etterson JR. 2004. Evolutionary potential of Chamaecrista fasciculata in re-
lation to climate change. I. Clinal patterns of selection along an environ-
mental gradient in the Great Plains. Evolution 54: 1446–1458.

Eviner VT, Chapin FSIII. 2003. Functional matrix: a conceptual framework
for predicting multiple plant effects on ecosystem processes. Annual
Review of Ecology, Evolution, and Systematics 34: 455–485.

Funk JL, McDaniel S. 2010. Altering light availability to restore invaded
forest: the predictive role of plant traits. Restoration Ecology 18:
865–872.

Funk JL, Cleland EE, Suding KN, Zavaleta. 2008. Restoration through re-
assembly: plant traits and invasion resistance. Trends in Ecology and
Evolution 23: 695–703.

Gerlach JDJr. 2004. The impacts of serial land-use changes and biological
invasions on soil water resources in California, USA. Journal of Arid
Environments 57: 365–379.

Griffith AB. 2010. Positive effects of native shrubs on Bromus tectorum dem-
ography. Ecology 91: 141–154.

Grime JP. 1998. Benefits of plant diversity to ecosystems: immediate, filter
and founder effects. Journal of Ecology 86: 902–910.

Grotkopp E, Rejmanék M. 2007. High seedling relative growth rate and spe-
cific leaf area are traits of invasive species: phylogenetically independent
contrasts of woody angiosperms. American Journal of Botany 94:
526–532.

Grotkopp E, Rejmanék M, Rost T. 2002. Toward a causal explanation of
plant invasiveness: seedling growth and life-history strategies of 29
pine (Pinus) species. American Naturalist 159: 396–419.

Grotkopp E, Erskine-Ogden J, Rejmanék M. 2010. Assessing potential
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