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Impacts of drought on plant water relations and nitrogen
nutrition in dryland perennial grasses

Albina Khasanova & Jeremy J. James &
Rebecca E. Drenovsky

Abstract
Background and aims Extensive worldwide dryland
degradation calls for identification of functional traits
critical to dryland plant performance and restoration
outcomes. Most trait examination has focused on
drought tolerance, although most dryland systems are
water and nutrient co-limited. We studied how drought
impacts both plant water relations and nitrogen (N)
nutrition.

Methods We grew a suite of grasses common to the
Intermountain West under both well-watered and
drought conditions in the greenhouse. These grasses
represented three congener pairs (Agropyron, Elymus,
Festuca) differing in their habitat of origin (“wetter” or
“drier”). We measured growth, water relations, N re-
sorption efficiency and proficiency and photosynthetic
N use efficiency in response to drought.
Results Drought decreased growth and physiological
function in the suite of grasses studied, including a
negative impact on plant N resorption efficiency and
proficiency. This effect on resorption increased over
the course of the growing season. Evolutionary history
constrained species responses to treatment, with gen-
era varying in the magnitude of their response to
drought conditions. Surprisingly, habitat of origin
influenced few trait responses.
Conclusions Drought impacted plant N conservation,
although these responses also were constrained by evo-
lutionary history. Future plant development programs
should consider drought tolerance not only from the
perspective of water relations but also plant mineral
nutrition, taking into account the role of phylogeny.

Keywords Drought tolerance . Gas exchange .

Nitrogen use efficiency . Resorption efficiency .
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PNUE, μmol CO2

mol N−1 s−1
Photosynthetic nitrogen use
efficiency

gs, mmol m−2 s−1 Stomatal conductance
Ψw, MPa Water potential
WUE, μmol
CO2mol−1 H2O

Water use efficiency

Introduction

Drylands cover 40% of the Earth’s land surface, support
over 2 billion people and house one third of the hotspots
for global biodiversity (Millennium Ecosystem Assess-
ment 2005;Myers et al. 2000). Despite their importance,
dryland ecosystems also are some of the regions
most susceptible to degradation and climate change
(Reynolds et al. 2007). While restoration to combat
dryland degradation is a top international priority
(UNCCD 2012), water and nutrient co-limitations
strongly impede the recovery of functional plant com-
munities (Drenovsky and Richards 2004; James et al.
2005). Researchers have focused heavily on selection
and development of plant functional traits that may
improve dryland restoration outcomes (Jones 2003;
Jones and Monaco 2009). Most of this work, however,
has focused on selection and development of traits re-
lated to drought tolerance and growth rate with little
emphasis on traits that increase long-term nutrient con-
servation. Nutrient conservation, which is realized
through a suite of plant traits that limit nutrient losses
to the environment (e.g., proficient resorption, long
mean retention times, high nutrient use efficiency), is
expected to influence population growth rate and resto-
ration outcomes of nutrient-limited systems (Berendse
1994; James et al. 2011). In the process of selecting and
developing plant material for dryland restoration it is
critical to evaluate the relationship between drought
tolerance and nutrient conservation traits.

While a general relationship between stress tolerance
and tissue longevity has been well established (Coley et
al. 1985; Lambers et al. 2008; Wright and Westoby
2003), the specific impacts of drought on nutrient con-
servation, particularly that of nitrogen (N) are complex.
Under drought conditions, plants alter metabolic and
physiological function to minimize negative impacts
and maximize survival (Thapa et al. 2011). In response
to drying soils, plants alter gene expression for proteins
involved in drought tolerance (Lambers et al. 2008;

Thapa et al. 2011). At the same time, plants decrease
physiological rates and alter growth and allocation pat-
terns (Drenovsky et al. 2012; Flexas and Medrano
2002). Although reduced stomatal conductance de-
creases plant water loss, it also limits carbon assimila-
tion (Casper et al. 2006), which, compounded with
decreased cell turgor, can limit growth. Additionally,
allocation patterns shift due to shedding of older leaves
in response to water deficit (Ludlow 1989) and in-
creased root mass allocation (Creelman et al. 1990;
Ribaut et al. 2009). Although these changes help mini-
mize cellular damage and water loss, they also have
important implications for whole plant mineral nutrition.
As soils dry, N uptake by roots may be limited due to
decreased N supply via mass flow and diffusion
(Dunham and Nye 1973) and reduced root N intercep-
tion due to lower root elongation rates (Lambers et al.
2008). However, N nutrition and drought tolerance are
interrelated, with increased external N supply improving
physiological status and growth in response to low soil
water availability (Drenovsky et al. 2012; Saneoka et al.
2004). Thus, under drought conditions, plants require
nitrogen to support changes in cellular and whole plant
processes and to maintain function, but they are limited
in their ability to access soil N due to decreased N
supply and uptake rates. Thus, N resorption, the with-
drawal of N-containing biomolecules from senescing
tissues, and internal plant N stores should play a critical
role in drought tolerance (Yuan and Li 2007). However,
efficient transport of recycled nutrients through the
phloem requires adequate water recycling from the xy-
lem, which may be limited under drought conditions
(Ruehr et al. 2009). As such, N resorption responses
under water-limiting conditions may be complex.

The impact of drought on N resorption has varied in
the literature, with studies documenting drought increas-
ing (Pavon et al. 2005), decreasing (Drenovsky et al.
2012; Minoletti and Boerner 1994; Wright andWestoby
2003), or not affecting (Diehl et al. 2008; Drenovsky et
al. 2010) N resorption. A suite of factors may influence
N resorption including (but not limited to) the timing of
drought relative to phenology, the evolutionary history
of the organism (i.e., phylogeny), as well as the severity
of the drought (Killingbeck 1996, 2004; Marchin et al.
2010; Silla and Escudero 2006). Thus, understanding
the relationship between a species’ drought tolerance
and its ability to conserve important internal N reserves
is critical and requires controlled studies that isolate one
or more co-varying factors influencing resorption.
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The aim of this study was to examine if species that
maintain greater growth and physiological function
under drought (i.e., species that are more drought
tolerant) also maintain greater N conservation under
drought. For this study we included a suite of grasses
widely used in dryland restoration in the western Unit-
ed States. The grass species used in this study
represent three congener pairs, with one species
in each pair being distributed largely in drier sites
and the other species more common in wetter
sites. Although we expected that drought would
decrease growth and physiological responses in
all species, we hypothesized that grass species
distributed predominately in drier sites would bet-
ter maintain trait responses under drought com-
pared to congener species that typically dominate
wetter sites. We also predicted that phylogeny would
constrain physiological and growth responses, lead-
ing to variation among the genera studied. Lastly, we
sought to understand how phenological processes and
drought interact to influence the amount of N lost
during senescence. We predicted that N resorption
efficiency and proficiency would be greater during
the fall than during the summer due to other physio-
logical changes occurring during seasonally-cued
aboveground senescence during the fall. However,
we expected that drought would limit the amount of
N resorbed from leaves, leading to greater plant N
losses, regardless of season.

Materials and methods

Study species

The selection of genera broadly represents those used
in some of the largest dryland restoration projects in
the United States. Congener pairs within these peren-
nial grass genera were used for study. Species selected
represent cultivars that have been developed for resto-
ration and vegetation management projects throughout
the Intermountain West. In each pair, one species tends
to be naturally distributed as well as planted in drier
regions while the other species tends to be more dom-
inant, as well as planted, in wetter regions (T.A. Jones,
personal communication). Species more common in
drier regions include: Agropyron fragile (Roth.) P.
Candargy (cultivar Stabilizer), Elymus elymoides
(Raf.) Swezey (cultivar Rattlesnake GP), and Festuca

idahoensis Elmer; species more common to wetter
regions were: A. desertorum (Fisch. ex. Link) Schult.
(cultivar ‘Douglas’), E. glaucus Buckley (cultivar
‘Arlington’), and F. roemeri (Pavlick) Alexeev. Seeds
were obtained from T.A. Jones, USDA-ARS, Logan
UT.

Experimental design

In April 2011, prior to germination, seeds were im-
bibed in water for 24 h. Following imbibition, seeds
were transferred to Petri dishes moistened with 10 %
strength modified Hoagland’s solution (Epstein 1972).
Once radicals appeared, seeds were transferred into
pots (10 cm wide, 30.5 cm deep; Treepots, Stuewe
and Sons, Tangent OR) with two seeds per pot and
placed in the John Carroll University greenhouse un-
der ambient light conditions. All pots were watered
twice per week with 25 % modified Hoagland’s solu-
tion to promote seedling growth. After 5 weeks, pots
were thinned to one plant per pot, and plants were
assigned to a randomized block design with eight
blocks. Two watering treatments (control and drought)
were applied. Control plants received water two to
three times per week, or as necessary to maintain field
capacity (approximately 20 % volumetric soil water
content). Soils in the drought treatment were allowed
to dry down to 7–8 % water content. Sufficient water
was added to the pots to re-wet the soil to 10 % soil
water content, and then allowed to dry again. Soil
water content was measured using a soil moisture
probe (Hydrosense, Campbell Scientific Inc., North
Logan, Utah) three times per week. Plants were
grown in the greenhouse from April to December
2011. To encourage natural senescence processes
during the fall (October-December), greenhouse
temperatures were allowed to cool to a minimum
temperature of 4 °C. Daytime temperature during
this period averaged ≈10 °C.

Physiological measurements and harvest

Physiological measurements were made during July
2011, 2 months after treatments were initiated.
Predawn plant water potential was assessed using a
Scholander pressure bomb following the procedures of
Turner (1988) to minimize transpirational water loss.
Photosynthetic assimilation and stomatal conductance
were measured using a Li-Cor 6400 infrared gas
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analyzer (Li-Cor Biosciences, Lincoln Nebraska).
Three sub-sample measurements were made at 10 s
intervals once conditions had equilibrated inside the
chamber. Water use efficiency (WUE, μmol CO2

mol−1 H2O) was calculated as photosynthetic assimi-
lation (A, μmol CO2 m−2 s−1) divided by stomatal
conductance (gs, mmol m−2 s−1). All physiological
measurements (except predawn water potential, which
was measured from 3:20 a.m. to 5:10 a.m.) were made
from 9:45 a.m. to 12:15 p.m. during four sunny days
with 790 μmol m−2 s−1 average photosynthetically
active radiation. Green leaves were collected for each
sample for tissue elemental analysis at this time. Ad-
ditionally, all leaves that senesced during the course of
the experiment were collected, once the watering treat-
ments were initiated. Leaves that senesced during the
active growing season were collected separately from
those that senesced at the end of the growing season to
assess how phenology influences the resorption
process.

Total aboveground and belowground biomass was
determined by harvesting all tissues at the end of the
experiment, separating live, green leaves, senesced
leaves and roots. All biomass was oven-dried at
65 °C and then weighed. Subsamples of green and
senesced leaves were ground with a ball mill and then
weighed for total N concentration by micro Dumas
combustion on a CN analyzer (Costech Analytical,
Valencia California). Leaves collected during the sum-
mer were used to estimate green leaf N concentration
and to determine photosynthetic N use efficiency
(PNUE, μmol CO2 mol N−1 s−1), which indicates the
amount of carbon fixed per unit of leaf N. N resorption
efficiency (Neff) was determined as the proportion of
nutrients resorbed from senesced leaves compared to
green leaves (Lajtha and Klein 1988). N resorption
proficiency (Nprof) was assessed as senesced leaf N con-
centration (sensu Killingbeck 1996). Leaves senescing
during the course of the experiment were analyzed sep-
arately from those senescing in the last month of the
experiment (December 2011), when plants were under-
going end-of-season senescence.

Statistical analysis

Means among congener pairs and drought treatments
were compared using analysis of variance (ANOVA)
for the following response variables: predawn leaf
water potential; A; gs; WUE; number of tillers; total

biomass; root mass ratio; summer green leaf N con-
centration; and PNUE. Main effects in our model
were: taxonomic group (i.e., genus); habitat of origin
(hereafter, “habitat”); watering treatment (control or
drought); and block. Explicitly including taxonomic
group into the model accounts for potential phyloge-
netic effects or constraints on traits (Harvey and Pagel
1991), rather than assuming that environmental effects
are the sole drivers of trait responses. To determine
whether resorption was influenced during drought and
at the end of the growing season, we assessed Neff and
Nprof in summer and fall with repeated measures
ANOVA (RM-ANOVA). The between-subject effects
included the same main effects and interaction terms
as for the univariate models. The within-subjects ef-
fects included the same main effects as for the univar-
iate models, with the addition of time into the model;
the interaction terms included those in the univariate
models as well as their interaction with time. Since our
goal was to understand how resorption patterns
changed over time, only within-subjects effects are
presented. Normality within the data was assessed
using the Shapiro Wilks test. Levene’s test was used
to test for equal variance among treatment groups. If
variances were not equal, the ANOVA models were
weighted by the inverse of the variance of the factor or
factors violating this assumption (Neter et al. 1990).
All data were analyzed with SAS v9.2.

Results

Physiological measurements

Drought treated plants had 2.2-fold more negative
predawn water potentials (ψw) compared to controls
(Fig. 1, Table 1). There was a significant three-way
interaction of treatment*genus*habitat (Fig. 1,
Table 1). Regardless of their habitat of origin, both
Agropyron species showed similar declines in
predawn ψw under drought conditions. In contrast,
E. glaucus, which typically grows in wetter soils,
had a 1.6-fold less negative predawn ψw under control
conditions but a 1.7-fold more negative predawn ψw

under drought conditions than E. elymoides, which
typically grows in drier soils. This trend was not
observed in the third congener pair, in which both
Festuca species had similar predawn ψw under control
conditions, but F. idahoensis, which generally grows
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in drier soils, had a more negative predawn ψw under
drought conditions than F. roemeri, which generally
grows in wetter soils. All other main effects and inter-
action terms were not significant (Table 1).

Photosynthetic rates (A) and stomatal conductance
(gs) were 1.3 and 2.5-fold higher for control relative to
drought treated plants, respectively (Fig. 2a–b,
Table 1); as a result, instantaneous water use efficiency
(WUE) was 4.5-fold higher in drought-treated plants
compared to controls (Fig. 2c, Table 1). There was
also a difference between genera for A and gs
(Table 1). Festuca species had the highest and Elymus
species had the lowest photosynthetic rates. Similarly,
gs was 1.4-fold higher for Festuca and Agropyron than
for Elymus. There was also a significant difference
among blocks for A and WUE (Table 1), but none of
the other main effects or their interactions were signif-
icant (Table 1).

Growth and biomass allocation

Compared to the physiological responses, growth and
biomass allocation responses were more complex,
with multiple, significant two and three-way interac-
tions observed for tiller production, total biomass, and
root mass ratio (Fig. 3a–c; Table 1). As a result, only
the trends resulting from the highest interaction
term(s) are described for each trait.

The only significant three-way interaction among
treatment*genus*habitat was observed for total biomass
(Table 1). In both the Elymus and Agropyron congener
pairs, the species typically growing in wetter soils had a

Fig. 1 Predawn water potential in response to soil water avail-
ability in grasses differing in their habitat of origin. Data are
means + S.E. (n=7–8). Species from drier environments are
indicated by an asterisk. Other abbreviations include: C control,
D drought
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stronger and more negative biomass response to drought
conditions than the species typically growing in drier
soils. However, this trend was reversed in the Festuca
congener pair, with F. roemeri, which typically grows in
wetter soils, producing a similar amount of biomass
under both control and drought conditions, while F.
idahoensis, which generally grows in drier soils, pro-
duced 1.5-fold more biomass under control relative to
drought conditions. Although the 3-way interaction term
was not significant for either tiller number or root mass
ratio (Table 1), there were significant genus*treatment
and genus*habitat interactions observed for these traits.
Agropyron and Elymus produced fewer tillers under
drought compared to control conditions; additionally,
both genera allocated slightly more biomass below-
ground when exposed to drought. In contrast, averaged
across the two species, Festuca produced more tillers

and allocated less biomass belowground under drought
than control conditions. Averaging across drought treat-
ments, species from drier sites tended to produce more
tillers than species fromwetter habitats, but the number of
tillers produced also was driven by genus, with the
Elymus species tending to produce more tillers than the
other two genera. Likewise, although the genus*habitat
interaction was significant for root mass ratio, this pattern
was strongly driven by the two Festuca species, which
showed the largest difference in RMR based on habitat.
Although a similar pattern was observed in the Elymus
species (i.e., slightly higher RMR in the more drought
tolerant F. idahoensis), Agropyron species showed simi-
lar allocation patterns, regardless of habitat of origin. The
block effect was significant for both tiller number and
root mass ratio (Table 1). All other main effects and
interaction terms were not significant (Table 1).

a

b

c

d

e

f

Fig. 2 Gas exchange and
growth and allocation traits,
including photosynthetic
rate (A) (panel a), stomatal
conductance (gs) (panel b)
instantaneous water use
efficiency (WUE) (panel c),
total biomass (panel d),
number of tillers (panel e),
and root mass ratio (panel f)
in response to soil water
availability in grasses
differing in their habitat of
origin. Data are means +
S.E. (n=6–8). Abbreviations
follow those in Fig. 1
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Nutrient use, allocation, and conservation

Similar to the growth and biomass allocation traits,
significant 2-way interactions were observed for green
leaf N concentration and photosynthetic N use effi-
ciency (PNUE) (Table 1). The genus*treatment inter-
action was significant for both traits (Fig. 3a–b,
Table 1). For example, green leaf N concentration
was similar among control and drought-treated
Festuca plants but tended to be higher in control than
drought-treated Agropyron plants. In contrast, PNUE
was similar in control and drought treated Agropyron
and Festuca plants but greater in Elymus control
plants. The treatment*habitat interaction also was sig-
nificant for photosynthetic N use efficiency (PNUE).
Species from wetter sites had 1.6-fold higher PNUE
under control relative to drought conditions, but spe-
cies from drier sites had higher PNUE under drought
conditions (Table 1). There were also significant
differences among blocks for PNUE (Table 1).
All other main effects and interaction terms were
not significant (Table 1).

Repeated measures ANOVA revealed that both Neff

and Nprof was poorer in summer compared to fall (i.e.,
lower proportion of leaf N resorbed and higher
senesced leaf N concentration in summer compared
to fall; Table 2, Fig. 4a–d). These resorption responses
through time also were influenced by treatment
(Table 2). For both Neff and Nprof, differences in re-
sorption between control and drought-treated plants
were small in summer but increased significantly dur-
ing fall. The genera also varied in their resorption
responses across the two seasons (Table 2), and the
interaction of time*habitat was significant for Nprof

(Table 2). However, the three way time*genus*habitat
interaction also was significant for Neff and Nprof

(Table 2). In the fall, Neff was similar among all
genera, irrespective of habitat of origin. In contrast,
the patterns varied among the three genera in summer
based on habitat of origin. Both Agropyron species
had similar Neff in summer. However, E. glaucus
(typically from wetter sites) had higher Neff in summer
than E. elymoides (typically from drier sites), while the
pattern was reversed for the Festuca species, with F.
roemeri (typically from wetter sites) having lower Neff

than F. idahoensis (typically from drier sites). In gen-
eral, E. elymoides and A. fragile (both from drier sites)
had poorer Nprof in summer and fall relative to the E.
glaucus and A. desertorum (both from wetter sites).
However, Nprof was similar for Festuca species at both
time periods.

Discussion

In this study, we assessed the impacts of drought,
evolutionary history, and habitat of origin on plant
growth and physiology. We predicted that drought
would decrease growth and physiological responses,
but that evolutionary history and/or habitat of origin
would constrain plant responses. As predicted, the
experimental drought treatment had a significant, neg-
ative effect on physiology and growth responses in the
six grasses included in our study, although these re-
sponses, in some cases, were also influenced by phy-
logenetic effects (i.e., significant effects of genus) and
the plant’s habitat of origin. Under drought conditions,
instantaneous measurements such as predawn water
potential, photosynthetic rate, and stomatal conduc-
tance showed strong declines. In contrast, seasonally
integrated measurements, such as tiller production,

a

b

Fig. 3 Green leaf N concentration (panel a) and photosynthetic
N use efficiency (PNUE) (panel b) in response to soil water
availability in grasses differing in their habitat of origin. Data
are means + S.E. (n=6–8). Abbreviations follow those in Fig. 1
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total biomass, and root mass ratio were more variable
among species in their response to drought treatments,
and the magnitude of the responses were often smaller.
Similar declines in water potential (Guenni et al. 2004;
Signarbieux and Feller 2012; Zhang et al. 2011), gas
exchange (Casper et al. 2006; Mukherjee et al. 2011),
and growth (Geber and Dawson 1997; Kimball et al.
2012; Yin et al. 2005) have been observed under both
greenhouse and field conditions in a variety of func-
tional groups.

Extending the well-described effects of drought on
plant growth, in this study we also demonstrated that
low soil water availability can directly impact whole
plant mineral nutrition, although these responses also
were modulated by phylogeny and/or habitat of origin.
In the present study, green leaf N concentration tended
to be higher in well watered Agropyron plants versus
drought treated plants, although responses to treatment
were minimal for Festuca plants. In a study of semi-
arid grasslands of Inner Mongolia, China, plants from
irrigated plots had higher leaf N concentration than
plants from unwatered control plots (Lu and Han
2010). These differences may be related to higher
plant transpiration rates and thus increased mass flow
of N through the soil under well-watered conditions
(Dunham and Nye 1973). In contrast, other authors
have observed higher leaf N under drought conditions
(Drenovsky et al. 2012; Huang et al. 2009; Wright et
al. 2001). This variability may be related to how plant
growth and N allocation are influenced by water avail-
ability. Increased water availability can lead to bio-
mass dilution of plant nutrients due to increased
growth rates under well watered conditions (e.g.,
Drenovsky et al. 2012), and higher N investment in
leaf tissue can promote greater WUE under drought
conditions (Wright et al. 2001). Additionally, although
PNUE typically declines under drought conditions
(Drenovsky et al. 2012; Yang et al. 2011), we observed
no consistent differences in PNUE among control and
drought plants. Instead, these responses were influenced
by the interaction of genus*treatment and genus*drought
tolerance effects. These data suggest that although phy-
logeny may constrain PNUE responses, environmental
selection pressures also drive how this trait is impacted
by drought. In our species, we observed that Elymus
species responded more strongly to drought treatments,
with respect to PNUE, than Agropyron and Festuca
species. However, species from wetter sites tended to
have higher PNUE under control relative to droughtT
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conditions, supporting the typically observed trade-off
between PNUE and WUE in response to drought
(Wright et al. 2001). In contrast, plants from drier sites
tended to have higher PNUE under drought conditions.
In a recent study comparing drought tolerance among
European beech populations, the most drought tolerant
populations showed the smallest declines in PNUE in
response to drought, and this trait was considered to be a
key factor in drought tolerance in this study (Sanchez-
Gomez et al. 2013).

Surprisingly, habitat of origin, in many cases, was
not associated positively or negatively with plant re-
sponses to drought, although the cultivars used in this
experiment are selected for use in large-scale restora-
tion projects based on their expected drought toler-
ance, as well as site conditions. It is possible that more
chronic or severe drought, which plants may experience
under field conditions, pose a stronger environmental
filter than was possible in our greenhouse study. Typi-
cally, more drought tolerant species are able to maintain
or show smaller reductions in performance-related traits
such as biomass and tiller production when faced with
declining soil moisture availability (Couso and
Fernandez 2012). In our study, most species produced
less biomass under drought conditions, and these reduc-
tions were similar across a priori classifications of

drought tolerance or susceptibility, as predicted by hab-
itat of origin. However, in two of the three genera stud-
ied, species from drier sites tended to produce more
tillers, regardless of treatment. Although the ability to
maintain shoot growth under drought conditions can be
used as criterion for drought tolerance (Lu et al. 2012),
slow growing species with decreased leaf area tend to be
more stress tolerant (Ludlow 1989). Thus, drought tol-
erance may be conferred by various combinations of
traits related to biomass and its allocation. One important
difference among the congeners was the ability of the
species from drier sites to maintain PNUE under drought
conditions, which may be a key functional trait
supporting drought tolerance (Sanchez-Gomez et al.
2013).

As hypothesized, phylogeny had a significant influ-
ence on physiology and growth responses, as evolution-
ary relationships can constrain plant responses to
environmental variation. As a result, responses to
drought varied across the three genera studied. Similar
to our work, in a study comparing drought tolerance
among eleven tree species, there was significant varia-
tion in functional trait responses to how drought toler-
ance was achieved among the five genera included in
the study. Quercus species tended to alter total leaf area
and biomass in response to drought, whereas Pinus,

a

b

c

d

Fig. 4 N resorption effi-
ciency (Neff, panels a–b)
and N resorption proficiency
(Nprof, panels c–d) in grasses
differing in their habitat of
origin in response to soil
water availability. Data for
both summer and fall re-
sorption are presented. Data
are means + S.E. (n=7–8).
Abbreviations follow those
in Fig. 1
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Arbutus, and Viburnum tended to change biomass allo-
cation patterns and photochemistry (Valladares and
Sanchez-Gomez 2006). In our study, differences among
genera were observed among traits related to gas ex-
change, growth, biomass allocation, and nutrient alloca-
tion and conservation. These phylogenetic effects may
offer insight as to why nutrient resorption responses to
drought are not consistent in the literature, as previous
studies have not conducted their work within a phylo-
genetic framework. Future work should investigate cor-
relations among these traits and drought tolerance from
a phylogenetic perspective.

Phenology also played an important role in internal
plant N recycling. Across treatments, poorer Neff and
Nprof were observed in summer compared to fall,
particularly among the Festuca species. Additionally,
drought resulted in poorer Neff and Nprof, with the
magnitude of difference between control and drought
plants increasing by the end of the growing season.
These data indicate three critical aspects of the resorp-
tion process. First, low soil water availability limits
plant nutrient resorption. During the senescence pro-
cess, mobile nutrients are retranslocated to storage
tissues via the phloem, and water availability influ-
ences this process (Ruehr et al. 2009). Although not as
well studied as the influence of soil nutrient availabil-
ity, other authors have observed decreased resorption
in response to drought (Huang et al. 2009; Marchin et
al. 2010; Wright and Westoby 2003 but see Sanz-
Perez et al. 2009). Second, the impacts of drought on
resorption may depend on seasonal timing and dura-
tion of the drought. We observed a stronger negative
impact of drought on resorption later in the growing
season, when plants were also undergoing natural
senescence processes, than during the summer grow-
ing season, suggesting that the impacts of drought on
plant nutrient budgets may be amplified over time.
Future research should assess the relative impacts of
short-term versus long-term drought effects, as well as
the impact of drought severity on the resorption pro-
cess. At a global scale, N resorption is more efficient
and proficient with decreases in mean annual precipi-
tation (Yuan and Chen 2009a, b). However, in our
study, we observed poorer resorption in plants
experiencing drought, relative to control plants. Thus,
patterns predicted at the global scale were not ob-
served in our suite of co-occurring species. At smaller
spatial extents, variability in local environmental pres-
sures, such as interannual precipitation differences and

variation in soil type (which influences soil moisture
availability) may obscure predicted patterns in plant
resorption responses to drought (Drenovsky et al.
2010). Third, phenological differences in resorption
are likely linked to the relative importance of growth
versus storage at the time of leaf drop. Although not
measured in our study, during end-of-season whole
plant senescence, other critical physiological process-
es are occurring, such as storage of non-structural
carbohydrates in root tissues. Sink strength is consid-
ered to be one of the most critical controls over the
resorption process, as it influences phloem transport
rates (Chapin and Moilanen 1991). Thus, greater N
resorption during fall may be associated with other,
concurrent storage processes.

Survival patterns in arid systems are heavily driven
by plant size, with larger individuals typically having
greater survival rates (Toft and Fraizer 2003). Restora-
tion research programs have placed major emphasis on
screening and breeding varieties for size and vigor under
drought conditions with the overall aim of producing
plant materials more capable of establishing and restor-
ing some aspects of ecosystem function in heavily de-
graded, often novel, conditions (Toft and Fraizer 2003).
Here, we show that beyond the direct effects of drought
on growth and plant N supply, drought also can have a
negative impact on internal N cycling processes. While
the impacts of drought on internal N cycling processes
did not necessarily correspond with expected differ-
ences based on habitat of origin, in five of our six study
species drought inhibited the ability of plants to
remobilize N from senescing leaves, as assessed by both
Neff and Nprof. In some of our species, drought prevented
30 to 50 % of the leaf N that could have been
remobilized from senescing leaves and stored internally,
as compared to control plants. The large variation in
response among the genera and the large variation in this
trait among study species suggest an important role of
evolutionary history in these responses as well as a
strong potential for selection on this important trait.
Thus, while selection and development of varieties with
increased drought tolerance will remain central in arid
land restoration programs, our study provides an argu-
ment for also simultaneously assessing N cycling traits
and trait variation of improved varieties.
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