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INTRODUCTION

Imagine a world in which there are infinitely many lines through a single point that are
all parallel to the same line; this world is referred to as the hyperbolic plane. This paper
is an introduction to the notions of the hyperbolic plane. It starts with a brief history of
the development of hyperbolic geometry and the mathematicians who contributed their
explorations of the hyperbolic plane. The reader will be reminded of some of the
important aspects of Euclidean geometry and some of the basic properties that will later
be adjusted to develop hyperbolic geometry. The hyperbolic plane will be constructed
from the pseudosphere and the properties of the Poincaré Upper Half plane will be
explored. The theory of Mdobius transformations and their properties will be developed
leading to an examination of hyperbolic isometries, which will be used to construct

other models of the hyperbolic plane.



CHAPTER 1: HISTORY

Geometry has been determined to have originated in Ancient Egypt; where geometry
consisted of isolated facts of observations and simple rules for calculations. Thales of
Miletus introduced a more modern treatment of geometry to Greece and from there
geometry as we know it today began. Democritus was a fifth-century B.C. Greek
philosopher who boasted that no one could surpass him in his knowledge of geometry,
not even the Egyptian Harpenodapts; giving insight that in his time Egyptians were
thought to be the most skillful geometers. Many believe that Democritus knew more
than what is taught in today’s high schools. Next came Eudoxus, who is given credit for
formally organizing the theorems of geometry into a structure that begins with axioms
and proceeds to derive theorems in a systematic matter. His books and writings did not
survive over the years. What we know about him is through second hand knowledge.
Hippocrates of Chios also attempted to organize geometry but the most famous of such

attempts was that of Euclid.

Euclid’s famous books, The Elements circa 300 B.C., have been described as an
incomparable masterpiece of systematic, deductive Greek thought. The Elements, which
consists of 13 books, has been translated into many languages and defined the content
of geometry for many cultures. Our most immediate concern is Book I where Euclid
describes the foundations of geometry. Euclid states five postulates that are exclusively
geometrical. The first four were accepted as postulates and are the axiomatic basis of
what is known as absolute geometry. They are: 1. To draw a straight line from any point
to any point, 2. To produce a finite straight line continuously in a straight line, 3. To
describe a circle with any center and distance, 4. All right angles are equal to one
another. The fifth postulate is also called the parallel postulate and was believed to be
unnecessary. It was thought that its validity could be demonstrated on the basis of the
first four postulates. The fifth postulate states that if a straight line falling on two
straight lines makes the interior angles on the same side less than two right angles, the
two straight lines, if produced indefinitely, will meet on that side where the angles are
less than the two right angles. Euclid first used the parallel postulate to prove that the

alternate interior angles formed by two parallel lines cut by a transversal must be equal.
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Over two millennia, mathematicians have repeatedly attempted to prove the parallel
postulate using the first four postulates. The first documentation of the fifth postulate
being questioned was by Proclus. He wrote a commentary on Euclid’s Book I and
proceeded to prove the fifth postulate. His attempt was flawed because he assumed that
two parallel straight lines are at a constant distance from one another which is a
statement logically equivalent to the fifth postulate. From then on there were repeated
attempts made by Arab mathematicians during the Middle Ages and by several
European mathematicians during the Renaissance, none of which proved to be valid.
Each successive demonstrator showed the falseness of his predecessor’s reasoning or
pointed out an assumption used that was considered to be equivalent to the parallel
postulate. Some of these theorems include: the sum of the angles of a triangle is equal to
two right angles, Playfair’s postulate which states that given a line and a point not on
the line, there exists exactly one line through the given point that is parallel to the given
line, and parallel segments contained between two parallel straight lines are equal.
Thus, there was no advancement made toward a settlement of the question, could the

parallel postulate be proven using the first four postulates?

Then, in 1667, a Jesuit, Gerolamo Saccheri, devised an entirely different approach to
this problem. He decided to do a proof by contradiction. He started with two equal
perpendiculars AC and BD to a line AB . He showed that when the endpoints C and

D are joined, the two angles at C and at D are equal. Saccheri keeps an open mind
and proposes three hypotheses: 1. They are right angles, 2. They are obtuse angles, 3.
They are acute angles. From there, he planned to demolish the last two options, thus
leaving the first. His reasoning contained an error and there really was not a
contradiction where he thought he saw one. He established several theorems along his
journey to the contradiction. He eventually believed to have finished his proof but did
not seem to be satisfied with the validity. He offered another attempt but lost himself in
the quicksand of the infinitesimal. He had no faith in the negation of the fifth but if he
would have had a little more imagination and been less bound by tradition, he would

have anticipated the discovery of non-Euclidean geometry from the third hypothesis.



Fifty five years later, J.H. Lambert carried out the valid portions of Saccheri’s work and
derived many more theorems. He established the formulas for the areas of triangles in
both hyperbolic and elliptic geometries. He dismissed the hypotheses of the obtuse
angle because it required two straight lines to enclose a space but he was tempted to
draw the conclusion that the third hypothesis (hyperbolic geometry) arises with an
imaginary spherical surface. He ignored this thought and continued to demonstrate what
he concluded to be the validity of the parallel postulate. Like Saccheri, Lambert arrived
at a conclusion that strongly contradicted his observations of his physical universe. He
could not help but conclude that he had arrived at a logical inconsistency. His research

was not published until years after his death.

About the same time, Gauss was attracted to the same question. He only published a
few reviews but it was clear that he was very interested in the subject. He was the first
to entertain serious doubts about the demonstrability of the fifth postulate and to
conceive a valid non-Fuclidean geometry. We attribute the name of non-Euclidean
geometry to Gauss but many of his contributions were not well documented and thus

not as well known.

About 1815, a professor of mathematics at Kazan, Nikolai Ivanocich Lobachevsky
became interested in the theory of parallels. He wrote an article titled “On the Principles
of Geometry”, in which he explains the principle of his “Imaginary Geometry”. He
assumed that given line m and a point p not on m, there exist more than one line through
p that are parallel to m. From this point he proceeds on to develop hyperbolic geometry

in a synthetic manner.

In 1868, Beltrami was the first to complete the proof of the relative logical consistency
of the hyperbolic plane. He pointed out that the trigonometry of the geodesics of the
pseudosphere was identical to the trigonometry of the hyperbolic plane. Consequently,
any self-contradiction that might arise in hyperbolic geometry would also constitute a
self-contradiction of Euclidean geometry. In other words, he proved that hyperbolic
geometry was at least as consistent as Euclidean geometry. Beltrami explicitly

formulated the Riemannian metrics that define the upper half-plane, for the unit disk
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model and the Beltrami-Klein model. Of all of these great mathematicians, it never
occurred to them that the sum of the angles of a triangle may be greater than two right
angles. Bernhard Riemann deduced a straight line could be unbounded but of finite
length; he thought somewhere the two ends of the line would meet and enclose it. He
explained that two straight lines intersect twice, like two great circles on a sphere in his
Dissertation of 1854. Felix Klein saw a geometry in which the straight line is finite and
is uniquely determined by two distinct points. Klein called the geometry of
Lobachevsky Hyperbolic geometry, the geometry of Riemann Elliptic, and the

geometry of Euclid Parabolic.



CHAPTER 2: ISOMETRIES OF THE EUCLIDEAN PLANE

We will start out with the trace of a curve with a direction along it. Consider the
directed trace of a curve as a rigid object in R” and move it around in space by a motion
that preserves rigid bodies. For example, we can move a curve to the left two units and
up 3 units. The properties of curves that remain unchanged by such motions are called

geometric properties. To clarify the idea of a rigid motions, consider the following

Y

definition. A mapping Jf:R —R' is an isomery if, for all V,weR,

”f (‘:) -f (W)H =HV““H . With this definition, we have translated the idea of rigidity into

the idea of distance preserving mappings.

For the rest of the section, we will consider isometries from R’ to R?. So we are
looking at transformations f (P) of the plane into itself such that d (P’,Q') =d (P,Q)
where P'= f(P) and Q'= f(Q). We define an identity transformation to be the

transformation, /d, that carries every point of the plane onto itself. Note that the

identity transformation is an isometry.
Proposition 2.1: Every isometry transforms straight lines into straight lines.

Proof':

Let 4B be a line and let P be on the line AB. Without loss of generality, assume that
the point P lies between the points 4 and B. Since 4, B, and P are

collinear,d(A,B)=d(A,P)+d(P,B). Let f(P) be an isometry. Then by the

definiton  of an  isometry, d(4,B)=d(4,B), d(4,P)= d(4',P'),



andd(P,B)=d(P',B'). Therefore d(4',B')= d(A4',P')+d(P',B') and hence P’ is on

the line 4'B’. So every isometry transforms straight lines into straight lines. m

Proposition 2.2: If two isometries agree on two distinct points, then they agree

everywhere on the straight line joining those two points.

Bsp f
PL/’\
Au
g

Let f and g be isometries and let AB be a line such that f (A)=g(A) and

Proof:

B'=f(B)=g(B
PI

A'=f(A)=g(A)

f (B) = g(B). Also let P be on the line AB and without loss of generality assume P

is between 4 and B. Since 4, B,and P are collinear, d(4,B) =d(4,P)+d(P,B).

From Proposition 2.1, d(f(A),f(B)) = d(f(A),f(P))+d(f(P),f(B)) and

d(g(4).2(B))=d(g(4),g(P))+d(g(P).g(B)). Since f(4B)=g(4B)=4B,
then d(7(4). /(P (s (P). () =d((A).e(P) +d(e(P).(5).
Since f(4)=g(A4) and f(B)=g(B), then

d(g(4)./ (P))+d (7 (P).2(B))=d(g(4).2(P))+d(g(P).&(B)).

Since d(f(P),g(B)) =d(P,B) =d(g(P),g(B)), then f(P) = g(P) ..

Theorem 2.3: If two isometries agree at three noncollinear points, then they agree

everywhere.



Proof:

Let f and g be two rigid motions and let A, B, and C form a triangle such that
f(A)zg(A), f(B)=g(B), and f(C)-—-g(C). Then we can draw a line that
intersects AA4BC at two points, X and ¥ . Then from proposition 2.2 f(X)=g(X)
and f (Y ) = g(Y ) . Thus by proposition 2.2, for any point P, f and g will agree. m

So now that we know that three points determine an isometry, then the following

corollary becomes evident.
Corollary 2.4: If an isometry fixes three noncollinear points, then it must be the identity
mapping.

Now we are going to classify isometries of the Euclidean plane into translations,

rotations, reflections, and glide reflections.

The first type of isometry is called a translation. We will denote a translation by 7 and

is define it as an isometry such that the line segments PP' and QQ' have the same
length and direction whenever P'=7(P) and Q'=7(Q). Think of a translation as

sliding throughout the Euclidean plane, and thus a translation creates a parallelogram.

We will consider the identity translation to be the trivial translation, in which the curve

stays in place.

Proposition 2.5: If A, B, and C are any three poinis then Tpc T 5 =T .



Proof:

Let T, and 7z be translations. Let P be an arbitrary point. Then by the definition of a
translation 7, (P)=F, ABP'P is a parallelogram which implies 4P| BP' and
AP = BP'. Similarly, 7,.(P")=P" and thus BCP"P' is a parallelogram which implies
BP'||CP" and BP'=CP". 1t follows that 4P| CP" and AP =CP", and hence ACPP"

is a parallelogram. So 4C | PP" and AC=PP". Therefore rAC(P)=P". So

Tty =Tyc- ™

It can easily be shown from proposition 2.5 that 7, 07,, =Jd and 7,07, =Id. Thus
-1

(T4s) =Tha-

Before defining the next type of isometry, we need the following definition. An
oriented angle is an angle together with an orientation either clockwise or
counterclockwise. All positive angles are assumed to have a counterclockwise
orientation and all negative angles are assumed to have a o
clockwise orientation.

So let C be a given point and let « be a given oriented

angle. The next type of isometry is called a rotation. A ¢
rotation, R, is the function that associates to any point

P the unique point P' such that

CP=CP'and L PCP'=« .



It can be easily shown from the definition that g, ,oR.,=1d and Rr._oR. _=1Id-

C,~a

Therefore the inverse of g . _is g

C,-a :

A third type of isometry is known as a reflection. Given a straight line m, the reflection
p,, is the transformation that fixes every point on m and that associates to each point P
not on m the unique point P'=p, (P) such that m is the perpendicular bisector of the

line segment PP'.

It can easily be seen that each reflection is its own inverse.
A forth type of rigid motion is called a glide reflection. Let A and B be two distinct

points. The composition £, °© 7, is called a glide reflection and is denoted by 7 4p.

A glide reflection is a composition of a translation and a reflection, making it clear the

inverse of Y is Vpy.

The composition of the identity translation and a reflection, is just a reflection.

Therefore a reflection is thought of as a special type of glide reflection.

Proposition 2.6: Suppose A ABC = DEF . Then, there exists a sequence of no more

than three reflections such that the composition of these reflections maps the points 4,

B, and C, onto D, E, and F, respectively.

10



Proof: Suppose A ABC = ADEF

Clearly there is a reflection 0, that will map point 4 to point D. Thus A4BC will
map to ADB'C' where B'=p,(B) and C'=p,(C). Note that DC'=AC=DF, and
therefore the line through D and perpendicular to FC' is the perpendicular bisector
of FC'. Thus there exists a reflection £, that will map C' to F and fix D. So
ADB'C' is mapped onto ADB"F where B"=p, (B '). Finally, note that
DB"=DE=AB and so the line through D and F is the perpendicular bisector of EB".
Then there exists a reflection 2 that will map ADB"F onto ADEF . Therefore the
map f=p/°p°0 does indeed map the points 4, B, and C onto the points D, E,

and I respectively. m
Theorem 2.7: Every isometry is the composition of at most three reflections.

Proof: Let f be an isometry that maps three noncollinear points to the image of each
point. Note that three reflections will also map the three noncollinear points to the same
image by Proposition 2.6 above. Let g=p,°p,°p0. Then f and g agree on three

noncollinear points and hence, by Proposition 2.3 they agree on every point. So every

isometry is the composition of at most three reflections. m

11



Theorem 2.8: Every isometry is a translation, rotation, or a glide reflection.

Proof: Let f'be an isometry. Then f'is the composition of at most three reflections. If /'is
the composition of zero reflections then it is the identity map. If fis one reflection, then
clearly it is a reflection. It can be shown that the composition of two reflections is a
rotation (if the lines of reflection intersect) or a translation (if the lines of reflection are
parallel). It can also be shown that the composition of three reflections is a glide

reflection. Therefore the only isometries are translation, rotation, or a glide reflection. m

With the existence of an identity mapping and an inverse for each isometry, as well as
the idea that composition of isometries is an isometry and function composition is

associative, the following theorem follows directly.

Theorem 2.9:The set of all isometries form a group.

12



CHAPTER 3: ISOMETRIES OF THE COMPLEX PLANE

Recall that z=x+iy is a complex number where x,y€R and i=V-1. The

complex numbers enjoy the same basic operations of real numbers: addition,

subtraction, multiplication, and division. So let ¢=a+bi be a fixed complex number
and let z=x+ yi be an arbitrary complex number. Then z+c=(x+a)+(y+b)i and
clearly the line segment from z to z+c is parallel to the line segment from O to C .
So if € is any fixed complex number, then the function f(z)=z+c is a rranslation

of the Euclidean plane.

We will also define e = cos@ +isiné to be the complex number of modulus 1 whose
argument is @ and so re’® denotes the complex number of modulus r whose
argument is @ . Also note e¢?e’ = ¢'@*?)  From here we have some properties of

ei(6+¢)

complex numbers. The product rule is denoted by w=re’re? =nr, for

6

0 i . , : z ne® K -

z=re’,w=re? eC. Similarly the quotient rule is denoted by —=-"—="e¢ ©-0)
w ne’

for Z—":l‘leio,w=7’28i¢ €C. Thus let & be a fixed angle and z=re” be an arbitrary

complex number. Then clearly ¢z is a rotation of the complex plane about the origin.

So if we translate a point z by —c¢, rotate about the origin by « and then translate it
back by C we get a rotation about a given point C. From this idea, we can define

f(z)=e“(z=c)+c=e"z +(1 - e"’)c to be the rotation of an angle o about the point

C,denoted R, .

If z=x+iy then Z =x—iy is the conjugate of z. Note that a point and its conjugate

are symmetric to the x-axis and can be thought of as a reflection about the x-axis. Note

— I z z
the following properties: ¢? =e™, ztw=7z+#w, zw=%-w, and —=—. Also note
prop W

w

arg (;) =—arg(z) and l;‘ = |z|. If m is a line through the origin and & is the angle that

13



m makes with the positive x-axis, then the reflection £is denoted by R , 0 p o R,_,. We

can write the reflection about a line through the origin as ez = ¢*°Z in the complex

plane. So if we extend this to any line we can denote the reflection about a given line m

by f(z)=e* (z—c)+c where c is a point on the line m.

We can summarize the results of translations, rotations, and reflections in the complex

plane. The isometries of the Euclidean plane all have the form f(z)=e“z+c or

i0— . .
f (z) =€”Z +c where ¢ is areal number and ¢ is a complex number. The converse of

this conclusion also holds. Thus, every function of either of these forms is an isometry

of the Euclidean plane.

14



CHAPTER 4: INVERSION OF THE EUCLIDEAN PLANE

This section describes a special type of mapping called an inversion. Inversions are
conformal mappings, and unlike isometries they do not preserve distance in the
Euclidean plane. Before we can define an inversion, we need the following

propositions.

Proposition 4.1: Let PO be a chord of a circle and let PT be any ray from P . Then,
the line PT is tangent to the circle if and only if ZOPT is equal to the angle at the

circumference subtended by the intercepted arc.

Proof: Given a circle centered at C .

T

(::>) Let PO be a chord, let PT be a tangent line to the circle ¢, and let 4 be a

point on the arc not enclosed by the angle Z7PO (see figure above). Let PR be a

diameter. Then ZPAQ = %APCQ =/PRQ

Also ZTPR = _75_, because PT is tangent to .. Therefore 5[2..- ZOPR=/TPQ

15



/4

Alsonote © RQ P is the angle in a semicircle and so ZRQOP = >

Since the sum of the interior angles of a triangle is ~, then
/PAQ = ZPRQ = %- ZOPR.

Thus LPAQ = £TPQ, so £LQPT is equal to the angle at the circumference

subtended by the intercepted arc.
(<) Let £PAQ = £TPQ sothat ZPRQ = £TPQ . Thus it follows that

LTPR=ZTPQ+ZQPR=/PRQ+ZQPR .

v/

Since ZRQP = % and ZPRQ+ZQPR =7~ /RQP then LTPR =7~ ZRQP=7

Thus PT is perpendicular to PR and so PT is tangent to the circleC . m

Proposition 4.2: Let P be a point outside a given circle q, let PT be a straight line,
and let PAB be a secant with chord AB. Then, PT is tangent to q if and only if
PA-PB=PT?.

Proof: Let P be a point outside a given circle g, let PT be a straight line, and let PAB

be a secant with cord AB .

16



(::>) Let PT be tangent to g. From the previous proposition, ZATP=/£PBT . Since
/TPA is common to both ATPA and ABPT, then by AAA similarity ATPA~ABPT .

Thus £4 - 27 andso PA-PB = PT?.
PT PB

i4~=fz. Since ZTPA is common to both
PT PB

ATPA and ABPT , then by SAS similarity ATPA ~aBPT . Therefore ZATP = ZPBT .

(<) Assume PA4-PB=PT”. Then

Thus it follows from the previous proposition PT is tangent to circle . m

Now with the following definition we are able to define an inversion.

Definition 4.3: Given a circle q with center C and radius k, the two points P and P'

are symmelrical with respect to q, if

i C, P ,and P' are collinear, with C outside the segment PP'
ii. CP-CP'=k?

Note that for a fixed circle g, the point P is symmetrical with the point P' if and only
if the point P' is symmetrical with the point P . Also P is symmetrical with itself if

and only if P lies on the circumference of ¢. Finally, it is clear that no point is

symmetrical to C , and C is the only such point.

The inversion /., is undefined at C in the Euclidean plane. Consider the Euclidean

plane as the plane of complex numbers and introduce an additional point, the point

infinity. We will define the inversion of C to be the point infinity and the inversion of
infinity to be C . The fixed points of [C,k are exactly those that lie on the circle

centered at C . Thus an inversion is a map of this extended plane, called the inversive

plane.

17



Definition 4.4: Let C be a fixed point and k be a positive real number. The inversion
is I, a function such that I, (P)=P " where P and P' are symmetrical with

respect to the circle with center C and radius k.

When the inversion transforms a circle p into a straight line m or vice versa, then the
straight line that joins C to the center of the circle p is a line perpendicular to the

given straight line m . When the inversion transforms a circle into a circle, their centers

are collinear with C .
Theorem 4.5: The inversion IC,k maps

i.  Straight line containing C onto themselves
ii.  Straight line not containing C onto circles through C
iii.  Circles through C onto straight line not containing C

iv.  Circles not through C onto circle not through C

Proof:
Part i: This follows directly from the definition of an inversion.

Part ii: Let m be a straight line not containing C , and let H be a point of m such that
CH is perpendicular to m. Let P be any point on m. Let H'=1 _ (H) and
P'=1.,(P). Since CH-CH'=k? and CP-CP'=k’*, then CH-CH'=CP-CP".

Thus it follows that %zg%. Also, since ZPCH is common to both ACHP and

ACP'H', by SAS similarity ACHP ~ACP'H'. Therefore /CP'H'= ZCHP = %

18



Since the position of H ' is independent of those of P and P', it follows that the locus
of P' is the circle that has CH' as its diameter.

Part iii: Since the inversion /, c.x 1s an involution, then this is the analog from the proof
of part ii. Instead of starting with a line not through C and mapping it to a circle
through the C , we are starting with a circle through C and mapping it to a line not
through C . Thus, we are done.

Part iv: Let p be a circle not containing C , and let P be an arbitrary point on P . Let

DE be a diameter of P whose extension contains C, and let D'=1.,(D),

E'=I.,(E),and P'=1I.,(P).

19



Since
CP-CP'=k%, CE-CE'=k?,and CD-CD'=k?,

cp_cp 4 CE_CP

CP-CP'=CD-CD'=CE-CE'". Thus it follows that — —_— =,
crP' CD' cp' CE'

Since ZDCP is common to ADCP , aD'CP', AECP, and AP'CE', then
ADCP ~AD'CP' and AECP ~aP'CE'.

So, £ZCDP = ZCP'D'and LCEP=/ZCP'E".

Note that ZE'P'D'=/ZCP'D'-ZCP'E" and ZE'P'D'= ZCDP - ZCEP . Since the
exterior angle of a triangle is equal to the sum to the two interior angles,

then ZCDP — Z/CEP = /DPE . Thus ZE'P'D'=/DPE. Also note that an angle

subtended by a diameter at the circumference is —Z_ . Therefore /DPE = _7_:;- and so

ZE'P'D'= 3[2_ Since the positions of D' and E' are independent of those of P and

P', then the points P' , D', and E' form a circle with D'E" as the diameter. m

Recall that a conformal transformation of the plane is a mapping in the Euclidean plane

that preserves the magnitude of the angles but not necessary the sign of the angle.
Theorem 4.6: Inversions are conformal transformations of the plane.

Proof:

& h

¥
i

20



Let L, be an inversion. Place a polar coordinate system with its origin at C and its

initial ray through the point P . Let 4 denote the curve #=f (6), 9<60<6. The

£ g
7(9)

inversion ; maps sto /' givenby r= F(0)= <6<6. Suppose now that the

angle & at P has sides %, given by the equations = £(6) for i=1,2 respectively.

Suppose that the given inversion 1., maps P, h, and K onto P', j, and Jj, respectively.

2

.
AC)

Then the image curves J, and J, have the equations r = F, (9) = , i=1,2.

Note for any point P on any curve 7= f (9) , the angle from the radius vector CP to
the tangent line at P is given by tan(y)= LT
¥

k2
Therefore tan(g,)= —g’— =Ll ~L‘. =—tan(y, ). Hence #=7-Y and similarly
1

Vi
1 ”’kzﬂ - f
7z
¢, =7—y,. Thus &' =¢ —¢, =(7—w,)—(7-v,)=w,~y =a. =

Proposition 4.7: Let q be a circle with center C and radius k, and let p be any other

circle. Then, the inversion IC’,{ fixes the circle p if and only if the circles p and q

are orthogonal.

Proof:
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(:>) Let p be a circle orthogonal to ¢, and suppose they intersect at a point 7' . Let

P be an arbitrary point of the circle p , and let 9 be the other point where the secant

line CP intersects the circle p . Therefore, by Proposition 4.2 cp.cQ =CT?=k?,

and hence I, (P) =(). Thus the inversion 1., maps the circle p onto itself.

(C:) Assume the circle p is fixed. Since IC,,{ interchanges points inside and outside
of g, then the circle p intersect the circle g in two points, call these points T and S .
Since /., fixes p and the straight lines CS and CT', then I, fixes the points T

and S .Let P be any other pointon p andlet 9 be the intersection of the secant line

CP with the circle p . Hence, by Proposition 4.2 CP-CQ = CT* =k, and thus it

CP CT
follows that EJ’,*:—CT-Q Since #TCQ is common to both ACPT and ACTQ, then

ACTP ~aCTQ . Thus ZCTP = £CQT . So by the Proposition 4.1 CT is tangent to
the circle p . Also note that the tangent to g at point 7' is perpendicular toCT" . Since
the tangents of p and ¢ through T are perpendicular to each other, it follows that the

circles p and g are also orthogonal to each other. m
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CHAPTER 5: THE PSEUDOSPHERE

Beltrami called surfaces with constant negative curvature pseudospherical. In 1839
Minding proved that two surfaces with constant Gaussian curvatures are locally
isometric if and only if their curvatures are equal. According to this result, all
pseudospherical surfaces that have the same negative curvature value possess the same

intrinsic geometry.

The simplest pseudospherical surface is the pseudosphere. Newton’s definition of the
pseudosphere states that the segment of the tangent from the point of contact to the y-

axis has constant length R.

To construct the pseudosphere, first start with a tractrix. A tractrix is often described as
the curve followed by a weight being dragged on the end of a fixed straight length, and
the other end moves along a fixed straight line. Thus, the tractrix is a curve in which the

segment of the tangent from the point of contact to the y-axis has constant length.

A tractrix can be parametrized as « ()= [sin (6),log(tan (%D+cos(6)} in the xz

A

plane. 1 /1-

A 4

A




If we rotate c(6) about the line z =0 then we get the pseudosphere with R =1. Thus

S = (sin (0)cos(v),sin(8)sin(v),log (tan (%)) +c0s (9)] describes the pseudosphere.

Solet X (9, V) - (sin B cosV,sinfsinV,log (tan [%)) + cosé?) , then it follows that

X, =(cos@cosV,cosGsinV, cot cos b)

X

14

(—sin&sin¥,sinGcosV’,0)

X, =(~sin@cos¥,—sinfsin ¥, —cos—cot fcscb)
X, =(-sin@cosV,—sinGsin¥’,0)
X, =X, =(—cos@sinV,cosfcosV,0).

Note that X, A X, = (— cosV cos® 8,—sinV cos’ §,cosd sin 6) and thus

|XonX,|= Jeos? ¥ cos* @ +sin ¥ cos* @ +cos? @sin® 6 = cosf .

2 . 2 .
So then N = XonX, (—cochos # —sinV cos“ @ CosgsmHJ.Therefore

1X9/\X,,]= cos§  cosf ~  cosd

N =(~cosV cosf,—sin¥ cos6,sinb).

Thene, f, g, E, F, and G are computed as follows:

e=(N,X,)=—cotf, f=(N,X,)=0,and g=(N, X, )=sinfcosd

E=(X,,X,)=cos’0csc’@, F=(X,,X,)=0,and G=(X,,X,)=sin"6.
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eg—f°  —cotfcosfsind—-0
EG-F* cos’fcsc’ Osin*6-0

Finally, K= —1. Therefore the pseudosphere has
constant curvature —1.

Next consider the following diagram.

The following parametric equations for the tractrix can be obtained: # = o —tanho and

v=secho. Then we can use u# and v to find the arc length 7 along the tractrix to be

T= j\/duz +dv? =log(cosho). Thus cosho = e’ and hence v =e™". So now use 7
0

and the angle S as coordinates on the pseudosphere. Therefore the length subtended by
the angle dr on a circular cross section is vdx =e "dx and hence the infinitesimal

distance ds between the points (x,r) and (x+dx,r+d'r) is ds?=e%dx?*+dr?.

Lastly we will introduce the variable y =e” which implies that dy =e’dr.
Once we make the substitution we get:

s’ + a’y2
—

d32 :e-zrdxz +d1'2 :e—zrdxz +e‘21dy2 — e—Zr (dxz +a§/2) -
Yy

Therefore the pseudosphere is locally isometric to the xy-plane if the distance is defined
dx* +dy*
yoo

to be ds* =

Now we can describe a conformal map of the pseudosphere. First the tractrix generators
x=c, where ¢ is a constant, are orthogonal to the circular cross sections o =k ,
where £ is a constant. So the image of o=k is represented by a horizontal line o=k .
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Secondly consider the arc of the circle o=k connecting the points (x,cr) and
(x+dx,o). The separation on the pseudosphere is xdx . In the image of the map these

two points have the same height and are separated by distance dx. Thus in going from
the pseudosphere to the image of the map this line segment is shrunk by a factor of x.

However, since the map is conformal, an infinitesimal line segment emanating from

(x,O') in any direction must be multiplied by the same factor 1. ¢ . Therefore the
X

metric is ds = Xds .

Thirdly, consider a disc on the upper part of the pseudosphere. With a diameter £. In

the image of the map it will be represented by another disc, whose diameter is .é— Now
suppose we repeatedly translate the original disc toward the pseudosphere rim, moving
it a distance of £ each time. As the disc moves down the pseudosphere, it reaches the

axis and its angular width diminishes. Thus the image disc in the map appears to

gradually shrink as it moves downward.

o (1) . : : :
Thus y=é€ 2(—) is the y-coordinate corresponding to the point (X,O') on the
X

pseudosphere. Therefore the entire pseudosphere is represented by the shaded area

above the line y =1 and represents the rim of the pseudosphere.

Ya
M I ¥
' i i
x| o=k x
B . i =
o : 1 t ] }é
- H ><| i I }_—;
L VR ! ! )
] t 5 ; ! @
o ] ! ]
o 1 b' ! 4 O
@ ] 8
i
1
H
c=0
1 3
1 Rim of pseudosphere 1
i
o L »
< X
Oy 2
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ds _ Jdx* + dy?

Y y

The metric associated with the map is ds =

In 1868, Beltrami discovered that hyperbolic geometry could be given a concrete
interpretation, and he also discovered that figures drawn on the pseudosphere obey the

rules of hyperbolic geometry.

One problem with the pseudosphere is that it has a boundary, the rim. Therefore it is not
a complete surface of the hyperbolic plane. We want a hyperbolic plane to not have a
boundary. The abstract hyperbolic geometry that was discovered by Gauss, Bolyai, and
Lobachevsky is understood to take place in the hyperbolic plane. This hyperbolic plane
is meant to be exactly like the Euclidean plane except that lines within the hyperbolic
plane do not conform to the fifth postulate and obey the following axiom: given a line

L and a point p not on L, there are at least two lines through p that do not meet

L.

The pseudosphere is topologically a cylinder rather than a plane. For example, a closed
loop in the hyperbolic plane can be shrunk to a single point, whereas this doesn’t
happen for a loop on the pseudosphere that wraps around the axis. Secondly, in the
hyperbolic plane a line-segment can be extended indefinitely in either direction, but on
the pseudosphere vertical lines cannot be extended indefinitely in both direction. They
will terminate when they reach the rim. Since the hyperbolic plane differs from the
Euclidean plane in two ways, the pseudosphere will not model the entire hyperbolic

plane.

Beltrami was able to solve the first of these problems. Imagine a sheet wrapping around
the pseudosphere infinitely many times. Then unwrap the sheet and cover the entire

region above the line y = 1, stretching as you go. As a result, a particle traveling round

and round a circle in the map would correspond to a particle traveling along a horizontal

line o =k on the pseudosphere.

Now the conformal map we developed solves the second problem. Imagine yourself as

a tiny two-dimensional being living in the hyperbolic plane, walking down a line x=c¢
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on the pseudosphere. Your walk will eventually be interrupted by the pseudosphere rim

at some point 5 , which corresponds to a point P on the line y =1. But in the map
this point p is just like any other, so there is nothing preventing you from continuing
your walk down toward the line y=0. You will never actually reach the line y =0
because it is infinitely far from P . This is a consequence of the defined metric.

We will restrict the Euclidean plane to the upper half-plane and refer to it with the
hyperbolic metric as the hyperbolic plane. This is also known as the Poincare upper

half-plane. There are several other different models of the hyperbolic plane, which

include Poincare’s disk model and the Beltrami-Klein model.
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CHAPTER 6: THE POINCARE HALF-PLANE

The Poincare half-plane model is denoted by H? and is the set of points

2 2
H2= {(u,v) eR*|v> O} with the hyperbolic metric, N +dy”
Y

First let’s find the curvature in the upper half plane. Note that E :—12-, F=0, and
v

G .—_.-17_ in the upper half plane model the curvature can be found by the equation
.

el ) () )

Also note that E, = :52— and G, =0. Thus,
v

-2
_ 3 2 = 42
Ko "l B 0="(—2]—vz2——1
2_1~ 1 2 v ), 2 v
V4 V4

Therefore the upper half plane has constant curvature —1, just like the pseudosphere.

Since the metric on H? was developed from the metric on the pseudosphere, then we

knew this should be the case.

Now let’s distinguish the hyperbolic plane from the Euclidean plane. This difference is
Euclidean length
5 :

the way distance is measured: hyperboliclength =
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, 2 2
Therefore ds = Nty . We use calculus to compute the hyperbolic length for any

Y
j‘\/dxz +66/'2 .
A

curve. We define the hyperbolic length of an arbitrary curve ¥ as

First we will find the length of a vertical line in the hyperbolic plane.

(%)

(x21)

Let x=f(y) and thus dk=f '(y)dy. Therefore the length of the segment is

5 V2 ' 2 2 2 \’ ! ’
j_ Jdx® + dy’ :)J. \/(f (y)dy) +dy =yj (f (y)) + dy . Since the line segment is
» y »n y M Y

1

Y2
vertical, we have f'(y) =0. Thus, J'_l..dy =lnyP:=In (_}12_)
y ‘ ¥y

he}

Fix ), and then lim In (—y—Z—J = oo . This shows that there is no upper bound in the upper-

B yl

half plane model of the hyperbolic plane.

Now fix ), and then lim ln[&J =w . So the x-axis is also not a boundary in the
»-ot b4

upper-half plane model of the hyperbolic plane.
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Proposition 6.1: Let q be a circle with center C (c,O) and Euclidean radius r . If P

and Q are points of q such that the radii CP and CQ make angles o and p with
1| S5 S —cot ﬁ)

a < 3 respectively, with the positive x-axis, then L, (P Q)= ( ta )
csca—cota

Proof:

If ¢ is the angle from the positive x-axis to the radius through an arbitrary point (X, y)
on g, then x=c+rcos() and y=rsin(r). Thus dx=—rsin(¢)ds and dy=rcos(r)dt.

Then it follows that the hyperbolic length of the arc PQ is

J. \/ ~rsin(t)dt) +(rcos(1)dt) =j-ﬂ _J- osc(£) di = ln(csc(ﬂ)—cot(ﬂ)] .

rsin () @ rsin (t cse(a)-cot(a) )

Fix g, then consider lim lnw The numerator, csc 8 —cot 8 is constant.
a—0"  csco —cota

) . . l-cosa .. sina
Now consider lim csca —cota = lim ——— = lim

a0 a-»0"  SInNg a-0" COS

= 0. Thus the denominator,

csca—cota becomes extremely small, and so lim In esef-cotB _ . Therefore the
a=0"  csco —cota

point P denoted in the previous theorem never touches the x-axis.
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Now fix «, and consider, lim| In csc(p)—cot(p ) . The denominator, csc(a) —cot (a)
x| cse(a)-cot(a)

1-cos(a)
sin (a)

is constant. Then },{‘3}, (csc ( /3)_ cot ( /3)) = lim [ ) = o . Thus the numerator

csc(B)~cot(B) becomes extremely large and so lim | In csc () - cot(B) ~ . This
x| csc(a)-cot(a)

implies that the point 0 from the previous theorem will never touch the x-axis either.

Note that there are only these two cases. We can have the two points above each other
to form a vertical line segment or the two points are not above each other and hence the
line connecting them is the arc of a circle with the center on the x-axis. We will call

geodesics that are vertical lines, straight geodesics and we will call geodesics that are

part of an arc of a circle with the center on the x-axis, bowed geodesics.

Theorem 6.2: The following Euclidean transformations of the hyperbolic plane

preserve both hyperbolic lengths and measures of angles.

i, Inversions L., where C is on the x-axis

ii.  Reflections p,, where m is perpendicular 1o the x-axis

iii.  Translations T 45, where AB is parallel to the x-axis

Proof': 7’ |

Part i




Let ; be the given inversion. Let , be the curve r=f (9) and let 7 be the curve
r=F (6’), the image of y after the inversion ; . Then I (9)F (9)=k2 and thus

K e ~k*f'(0)
F(6)=——, which implies that F "(@)=—"—5".
(7))

/(6)

The hyperbolic length of 7 is

do

~k2f'((9) ’ . k2
f\/[f’ ©I+[re] ~f\/[ [7(®)] } [f (9)}
’ F(0)sin8 - 2

: [?ﬁ@}me

d@ ,which is the hyperbolic length of .

zf\/[f'(e)]2+[f(9)]z
) f(6)sing

Therefore Euclidean inversions preserve hyperbolic length.

Part ii: Let the vertical line m have the equation x=c.

It is clear that two points (x,, y,) and (xz, Vs ) are symmetrical with respect to this line
if and only if ¢ = —)—C—‘%z— and }} =)5. Let ¥ be a curve parameterized as (u (t),v(t)) ,

a<t<band 7=p,(y) has the parameterization (2c—u(r),v(r)), a<t<b.
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Thus it follows that along 7, dx:u'(t)dt and afy-—-—v'(t)dt, and along 7,

dx = —u'(t)dt and dy =v'(t)dt.

,/ \[ t)y +
Therefore the length of 7 is J‘ a +dy j. ! () v dz‘ and the length of ¥

o oeTa” ol 0
P y a v(1)

1 2 !
Since ?\/[u (t)] b (t) dt = j\/[ ? (t):l + dt , the length of 7 is equal to the

v(t) v(t

length of 7; hence Euclidean reflection over a vertical line preserves hyperbolic length.

Part iii: Let 7 be the translation such that T(x, y) =(x+h, y) for some fixed number
h .If ¥ is any curve parameterized at (u (t),v(t)) , a<t<b,then 7(¥)=7 has the

parameterization (u (t)+h,v(t)), a<t<b. Thus it follows along both ¥ and y that

dx = ()dt and dy=v (t)dt Therefore the length of 7 is j “ t) hild (t

v(7)

which is the length of 7 aswell. m

Theorem 6.3: A hyperbolic reflection is either
i. A Euclidean inversion, I ,, where C is on the x-axis.
ii. A Euclidean reflection over a vertical line.

Proof:

Part i:




In the previous theorem we showed that for I cx» where C is on the x-axis , the
hyperbolic length of finite curves is preserved. We need to show that PM = MP'. Note
I .« mMaps circles to circles, and so I .« maps circle 7 to a circle. In fact since P is
mapped to P', P' is mapped to P and M is a fixed point, then circle # is mapped to

itself under / cx - Soarc PM maps to arc MP'. Since I, fixes circle ?, then the angle
of the intersection is -g—, by Proposition 4.7. We know angles in the hyperbolic plane

have the same measure as their measure in the Euclidean plane, so the angle at point M

is -7-2[— Therefore ¢ is a perpendicular bisector of PP', which implies that I, isa
hyperbolic reflection.

Part ii:

From Theorem 6.2, we know that the hyperbolic length of the curve 4B is the same
length as the curve 4'B. Note that the hyperbolic line is the arc of a circle centered on

the x-axis, and since AB=A'B then line m goes through the center of the circle

containing A, B, and A'. Therefore the angle at B is .7-2[~ . Hence line m is the

perpendicular bisector of the hyperbolic line 44" . Thus, a Euclidean reflection over a

vertical line is a hyperbolic reflection. m

Theorem 6.4: Each H*- isometry is the composition of zero, one, two or three

hyperbolic reflections.
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Proof: Since H? geometry contains absolute geometry, then the proof is the same as the

proof of Theorem 2.7.

Corollary 6.5: The set of all H2- isometries form a group.

Proof: The proof follows the same idea as in the Euclidean case because each reflection
is its own inverse and function composition is associative. Also the identity is a

hyperbolic isometry and the composition of isometries is an isometry. =
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CHAPTER 7: MOBIUS TRANSFORMATIONS

az+pf
yZ+0

We denote M = {T | C > Cwhere 7z = with ad — By # O} to be the set of all

Mobius transformations.

If a8 -~ By =0, then ad = Py . Therefore

_az+B y _(ar)z+By _(ar)z+ad _ a(7z+9) _a , which is a constant.

Tz > > = =
yz+8 ¥y ylz+yS yiz+y5 y(yz+8) ¥

So the complex plane would be mapped to a single point and thus this is the trivial case

so it is not interesting. Consider the special cases below.
The first type is called a dilation about 0 with » > 0. The dilation is called a stretch if

r>1 of shrink if 0 <r <1.If we let #=0=y, then a dilation is Tz:[%}':a'z.

The second type is called a franslation of the complex plane, which is described as the

shifting of z in some direction. So let y =0, @ =1=¢ and thus a translation is denoted
astz=z+pf3.
The third type is called reciprocation. If we let a=6=0 and g =y =1, then we

describe a reciprocation by Tz = L
V4

Therefore infinity maps to 0, 0 maps to infinity, the unit circle is mapped to itself, the
inside of the unit circle is mapped to the outside of the unit circle, and the outside of the

unit circle is mapped to the inside of the unit circle.

Finally a reflection about the y-axis is Tz = -7 . By taking the negative of z, it is a

reflection about the origin and then the conjugate of z reflects it about the x-axis.

Theorem 7.1: Every Mobius Transformation is a composition of at most dilations,

translations, and reciprocations.

37



az+pf

yz+

Proof: Case 1: y=0 and 1z= ,a0—Py#0 Then a#0 andd#0. So

Tz:(%)z-%(—'g—). Let T]'Z:(%JZEM and let Tzz:z+(—§-)EM, therefore
E:(];OY;)Z

oo
wip_ oty

vz+8 ¥y yz+68

Case 2: y # 0. Therefore 7z =

Let
T,z =yz (dilation)
T,z=z+& (translation)

T,z=— (reciprocation)

bty |-

T,z= ( ;i —9‘7—5}4 (dilation)

Tiz=z +—§f— (translation)

75]
o
N
1
—~—
m’ﬂ
o
23
o)

T,oT,oT)z. Then Tz=yz and so L(Liz)=yz+5. Then

ﬂ—f—@)

L(5(72))= 15-ThenT4(T3(7;(71)))=——————( —

and finally

,B—a75 . y(ﬁ—i/—é)+a(yz+§)

+

N yz+8 —7_” 7(yz+9)

_yB-ad+ayz+ab _ y(az+pB)
y(72+5) 7(}/z+5)
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_az+p
yz+6 .

Therefore T (71 (Tz (Tz (7 )))>

Now consider the domain and range of Mébius transformations.

Since we cannot divide by zero yz+85 #0 and z # = ; thus the domain is C\ {— é} .
v /4

Ié

a+=
If we divide by z we get Tz = 52 and so the range is C\ {ﬁ} .
/4

y+=
zZ

So T :(C\{——_é}a@\{g—}. Now extend C to the extended complex plane, C , and
4 4

hence

Tz ifze(C\{—é}

e
Tz =1 gifz:oo
Y
wifz="2
e

az+pf

Theorem 7.2: If Tz = 5 ,a6 — Py #0 , then T:C—>C isa bijection.
yz+

az,+p _az,+p
yz,+8  yz,+6

Proof: There exists z,z, € C\ {—g} with 1z =1Z,. This implies
which implies (052I + ,B)(}/22 +5) = ( vz, + 5)(0522 + ,8) which leads to
oyz,z, +00z, + Pyz, + 50 = ayz,z, +adz, + Pyz, + f
adz,— Pyz, =adz, — Pyz,
(ad—Pr)z, =(ad—py)z,.
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Since aé - By # 0 then Z; =2,. Thus T is one to one.

&
¥

Let weC\{ } If 2:Tz=w then 2252 _ o which implies az+ 8= yzw+ Sw

yz+06

and SO az-yzw=+5w—-f3. Thus (05-}'w)2=5w——ﬂand SO

Zzaw)“ﬂe(C\{:—é}. Since ad—(-y)(-B)=ad—pPy#0, then z is a Mobius
a-—-yw Y

transformation. Hence T is onto.
Therefore T is bijective. m

Corollary 7.3: The compositional inverse of a Mobius transformation is a Mobius

transformation.
Lemma 7.4: If T,S e M, then ToSeM

az+ﬂ’a5_ﬂ7¢0 and let Szzaz+b

yz+0 cz+

Proof: Let 7 = ,ad —bc #0.

Then

(ToS)z=T(Sz)=T[aZ+b)— a(:‘::z)f.[“”)

cz+d) (az+b) cz+d
Y +
cz+d

_aaz+ab+Bez+pd _(aa+pfe)z+(ab+ pd)
yaz+yb+Scz+8d  (ya+oc)z+(yb+5d)

Thus it remains to check that(aa + ﬂc) ( yb+d6d ) ~(ab + fd ) ( ya+ 56) #0.
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(aa+ Be)(yb+6d)—(ab+ pd)(ya+bc)
=ayab+adad + fybc+ fScd —adab—adbe — fyad - focd
=adad + fybc—adbc— fyad
=aé(ad —bc)— By (ad —bc)=(ad - fy)(ad —bc)#0

Therefore (TOS)Z eM.»

Theorem 7.5: The set of Mdbius transformations with composition is a group on C.
Proof: 1. Closure: by previous lemma
2. Associativity: composition of functions is associative

iz+0

3. Identity: Tz =z =
0z+1

eM

4. Inverse: yes, by the previous corollary .

So from this point we develop a natural question; what do translations, dilations, and

reciprocations do to a circle or line?

First start with translations, 7z = z + § where [ =x, +iy,

Let L= {z =x+iy|y=mx+ b} which is the set of lines in the complex plane. Then
Tz=z+f=(x+ip)+(x, +iy,)=(x+x,)+i(y+y,)
And therefore, m(x+xo) +b=mx+mx,+b=y+mx,, since y=mx+b. Therefore

y+nx, =y+y,—Y, +ho, =(y+yo)——(——mxo +y0) .

newx newb newy
f“"“A""'"\

Thus m(x+x0)+(—mxo + yo)z y+y, is a line with the same slope and different y-

intercept.
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Therefore translations map lines to lines.

Let C= {z =z +re",0 Sz‘éer} and let zeC and hence Tz=z+pf=(z,+p)+re"
which is a circle with radius r, and center z, + 4. Thus translations map circles to

circles. Next, consider dilations, 7z = ¢z with a¢#0.Let o= roeig" .

Case 1. Let L be a line through (0,0), S0 Lz{re’e —-00<r<oo}. Let ze L. Then

Tz:az-:(roeie“)(reig ):rorei(0°+9), Thus we get a line through (0,0) and

—00 < ¥ <0 at a different angle.

A

e

v

Case 2. Start with some L through b, then apply Tz=z-b to L which is a translation

of L to the origin. Then apply T,z =z which is a line through the center at a different

angle.

A T (T2 (Tl (L)))

/‘ 7, (5 (L))
/ (L)

»

!

<
<%
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Finally apply 7T;z=z+ab which is another ftranslation, and hence
(T, oT,o1,)z=T,(T,(z—b)) =T,(az—ab) = az. Therefore a line not through the

origin is mapped to a line not through the origin. Thus a dilation maps lines to lines.
Let C={z, +re” 1039327[} and let zeC.

Then

~ i i (6+0,
Tz=T (z1 +re” ) =q (z‘ + re’g) = az, +are” = az +r,re"%)
where 0<@<2x so Tz is centered at @z, and has a radius 77,. Therefore dilations

map circles to circles.

Finally we take a look at reciprocations, Tz = 1
zZ

Note that the general equation of a circle or a line in R s
A(x2 + y2)+ Bx+Cy+D=0. Since we do not want a point or the empty set, then we

will require B> +C>-44D >0 and 4,B,C,DeR.If 4=0, then we get a line and if

A#0 then we get a circle. So in the complex plane the equation of a circle or line is
2 -7 B C\ _(B C
A( ‘)+ﬂ(z )+C(22.Z)+D=O. So A|Z|2+Z(‘“+— +z| —=—|+D=0 and
1

2 2 2 2

~iC +iC

hence AZE+Z(ﬁ ! )+?(ﬂ ! )+D=O.
2 2

+Z
zZ
2

Let a=A , d=D, and b :fL‘;E

. Therefore, the general equation of a circle or line

is: azz +bz+bz +d =0 where a,d R and beC.

So Tz=1 and let L be a circle or a line and let zeL which implies
V4

azz +bz+bz+d=0.Let w=Tz so w.:l and so Z:—l——.
z w
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Therefore a(}-)(l) Eﬂl)+b(—l—)+d =0, which implies —q:+—[)~+——b_—+d =0

W\ W w w ww w W

and thus a+bw+bw+dwiw=0.Let a,5 ¢ R with a=d, §=a,f=beC.

_ e T
Therefore aww+ Sw+w+6=0 where ‘ﬂ =|bl =lb”]>4ad=4a§, So a line

through 0 maps to a line through 0, a line not through 0 maps to a circle through 0, a
circle not through 0 maps to a circle not through 0, and a circle through 0 maps to a line

not through 0. -

In conclusion translations, dilations, and reciprocations map circles or lines to circles or

lines.

Theorem 7.6: Let Z,2,,23 €C bpe distinct elements, then there exists a unique T € M

such that Tz, =1, 1z, =0, and Tz, = .

Proof:
Note that
TZ:(Z, -Z3J(z-zzj= (z-z)z-z(2-%)
-z, \z-2,) (2,-2,)z-2(2,—2,)
Then

(z,-2,)(-2z)(z ~2.)~(z-2)(-2)(z-2)=(z ~2,)(z,-2)(~2+2,) %0,

because Z;,Z,,2Z; are all distinct. Thus it follows that Tz, =(Zl ~ % J(Zl ~ % J =1,
LT J\E5 T2

z,—z zZ,—Zz z,—z Z,— 2
TZZ:( ; 3j( ) 2):0,and Tz3=[ , 3J( : 2]200',
Zy =2y )\ 2723 2y = Zy J\ 2372

Theorem 7.7: Let z,,z,,z, € C be distinct elements and let w,,w,,w, € C be distinct

elements. Then there exists a unique T e M such that Tz, =w,, Tz, =w,, andTz; = w;.
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Proof: By theorem 7.6 there exists a unique S, € M such that S, (Z])zl Y (22) =0

-4

and S (23)=00. Similarly, there exists a unique S, €M such that Sz(W,)zl ,

S,(w;)=0,and S, (w,)=c0. Thenlet T =S;' oS, € M . Hence the following hold:

T(z)=5;"(8(2))=5"(1)=w
T(zz)zSz‘l(Sl(zz))zS;' (0) =w,
T(z)=S5;" (S1 (2'3))=S2"1 (0)=w,. =

az+f
yz+0

Note thatif 7 e M . Then 7z =

,ad— Py #0,and

248\ @) -(az+ B)(y) _ayz+ad-ayz-Py _as-pr .
(yz+6) (yz+6)’ (yz+6)

Therefore 7% is an analytic mapping where 7'z#0 and such mappings are conformal.
This is desirable because it implies that Mobius transformations mappings that preserve

angles.
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CHAPTER 8: HYPERBOLIC ISOMETRIES

We now turn our attention back to the hyperbolic plane and will describe hyperbolic
isometries with complex numbers. We know that reflections about a vertical geodesic

are isometries in the hyperbolic plane, and hence horizontal translations are also
isometries of the hyperbolic plane. Clearly either f (z)=z+r or f (z)=2+r

wherer € R, are complex descriptions of these isometries.

We also know that Euclidean inversions centered on the x-axis are hyperbolic

isometries, in particular they are reflections. If z'=1, (Z), then z' lies on the line
through the origin and z, thus it follows directly that arg(z') =arg(z) and IZHz'l =K.

' k2 .
=k?, then z'=1y (Z)=—_—. So we can describe

2
Since arg(—]-c;w]zarg(z) and ‘z] =
z

L2
7

2

any inversion as 1, (z)=1,,01l, o7 ,,=——+a. Since hyperbolic isometries are
AK 04 * 4ok °Ta0 = =

compositions of Euclidean inversions then we can characterize hyperbolic isometries as

described above.

Since we know that every hyperbolic isometry is the composition of several hyperbolic
reflections, then we can describe all hyperbolic isometry as explicit expressions. From

this, the following theorem is developed.

Theorem 8.1: The orientation preserving hyperbolic isometries in the upper half-plane

az+
model are of the form [ (z)= ? , where a,fB,7,6€R and ad-pPy>0 and
yz+
— -z + ﬁ . . .
I (z) e where a,B,y,0 e R and ad — Py >0 are the orientating reversing
—¥Z +
isometries .
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lz+7

Proof: Clearly the horizontal translations have the form , the reflections in the

0z+1
. . 1(-2)+r . .
straight geodesics have the form 0(2)+1 , and reflections over the bowed geodesics
-Z)+
pE -a(—‘z’)+(k2 —az)
have the form —+a= — . In each case ad - By > 0. We know that
Z—-a —(——z) -a

the composition of Mobius transformations, is again a Mobius transformation. The

relation @8~ By >0 still holds. So let f(z)=“z+'8 where @8-y >0 and let
yz+0
_a_'(.:M LIS LY 2 L Py |
g(z)= ()76 where a'6'-B'y'>0.
Then
a'(-z)+p'
Gonoye G20 (e b)) (e 0)
() B Garar)(2) (55
y'(-z)+6"
and
(a'+ By (yB'+36") ~ (oB™+ BS") (yor'+ &)
=aa'yB'+ By'yB'-apf'Sy'- pé'ya’
=(ad-By)(a's'-B'y')>0.
Also

az+ pf
vers P (ot pr)z+(pa+ po)
az+f | o  (ya+y8)z+ (3B +85)
yz+38

(fof)(z)=
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and
(aa+,8;/)(}/ﬁ+5§)—(a,b’+,85)(ya+6y)

=aadd —adPy —adfya + BLyy

=(as-py) >0.
Finally,
(g08)(2)= ( 1)(7'(_E)+5'] ’ _la'a-py)zt(p'6-a'F)
(| EEEHA) (y'a'=8'y)z+(8'6"-y' ")’
7'(=1) y'(-2)+6"
and

s(a’a'—ﬂ’j/')(é'5'—)/',6')——(}/'a'—-&'y')(ﬂ'é"——a'ﬂ')
—a'a's'6~a'S'y Bl-a'Sy' BB B Yy
=(a'5'—,b"}/‘)2 >0.

Since every hyperbolic isometry is the composition of some hyperbolic reflection, then

it follows that all hyperbolic isometries have either the form of f (z) or g(z) .

) az+pf
Conversely, consider /()= - where a6~ 8y >0 and y = 0. Then through some
z

algebraic manipulations it can easily be shown that

az+ f (ag_zﬁy) 5 a-0
1) =22 mz_f_é] +[.7) J{._;_J
Y
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Therefore f (Z) is the composition of the inversion with the reflection in

=8 o)\ yJas-py
y )P

the straight geodesic above the point (g{——é, 0) , which are both hyperbolic isometries.
4
Similarly if y =0 and 6 #0 then f(z)= %—z + g Thus f (Z) is the composition of a

dilation with a horizontal translation, which are both hyperbolic isometries.

-7)+
Now suppose that g(z)= a(-2)+h where a6 — By >0 and y #0. Then with some

7(-7)+6

algebraic manipulations it can easily be shown that

asd - Py
a(-z)+ B ¥’ 5§ a-6
g(z)= — = +-+ )
) y(-2)+6 .9 v 7
y

So g(z) is the composition of an inversion in a bowed geodesic with a horizontal

translation, = which are  both  hyperbolic  isometries. Similarly,  if

y=0 and 6=0, then it can be shown that g(z):—%‘z‘+§. Thus g(z) is the

composition of a reflection over the y-axis, a dilation, and a horizontal translation. m
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CHAPTER 9: POINCARE UNIT DISK

There is an isometry from the upper half plane to the unit disk and it happens to be a
Mobius transformation. Consider the mapping that fixes both 1 and -1 but sends 0 to
—i . Note that Mobius transformations preserve cross ratios, which allows us to easily

determine the Mobius transformations given the mapping of three points. Therefore

(w=w)(w, = ws) _ (z-2)(z —23).
(w=w)(w,-w,) (z—2)(z,—2)

Let z,=1, z,=0, z=—1, w=1, w=~i and Wy =—1.

By the cross ratio,

(w—l)(—i+1)= (z—~]) .
(w+1)(—i—1) (—z—l)

Therefore

(w=1)(= i+1)(~z=1) =(w+1)(- i-1)(z-1).

So izwH+z—w—i=—izw—z+w+i and thus -2izw+2w=2z-2i. Finally,

w=U(z)= Z._ll =2 ﬂ is the isometry from the upper half plane model into the disk
—iz+1  z+i

model of the hyperbolic plane.

iz—1

Now consider ¥ (z) = -
—z+1i

Note that

i iz—l' Uiz =1)+(~z+7) -2z
oo
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and

fiz+1) y |
)= _%:1)); N .lé,f:g;((z:g) B :222 —

z+1i

iz—-1
—zZ+1i

Therefore ¥V (z)= is the inverse of U(z), and hence there is a one to one

correspondence between the upper half plane and the unit disk. Later we will show that

iz+1 . . . . . . ;
U(z)= ~ 1S an isometry. Since isometries map geodesics to geodesics, then we
z+i

know that the mapping U (z) = : ﬂ maps the geodesics of the upper half plane to

zZ+1

geodesics of the unit disk. Since Mobius transformations are conformal and map circles
or lines to circle or lines, then we can explicitly describe the geodesics in the unit disk.
One type of geodesic in the upper half plane are vertical lines that are perpendicular to
the x-axis. It can be shown that these geodesics are mapped to the diameters of the unit
disk. Also circles perpendicular to the x-axis are geodesics in the upper half plane, and
so these will map to circular arcs that are orthogonal to the unit circle. Thus it follows
that the geodesics of the unit disk are the diameters and circular arcs orthogonal to the

unit circle.

Now let w = x +iy be a point in the interior of the unit disk and let z=wu+iv be the

iw-1
—~w+1

corresponding point in the upper half plane. Clearly z =V (w) = and therefore

i(x+)-1 _ (y+)-ix (y+1)-ix .x——i(y—l) _ 2x+i(1~—x2—y2)

u+lv=__(x+l~y)+i—x+i(y—-1)—x+i(y—l) x—i(J’“l) x2+(y—1)2
Thus, u=—%‘)‘c“‘“‘2‘ and v:__l_ﬁ)_’i__
) O
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So

o (F+O-0)2)-25(2%) ax sa(y-1)’

6x_ (x2+(y—1)2)2 (x2+(y—1)2)2

ou (xz +(y—1)2)(0)~2x(2(y——])) _ ~4x(y-1)

oy (= +(-1y) (& + (1))
o (F40-0)20-(-5 7)) ax(r-1)
Ox (x2+(y—])2>2 (x2+(y——l)z)2
o (= + (=1 )(29)-(1-x" - ") (2(»-1)) _2e2(y-1)
oy (2 +(-1)) (2 + (1))
Recall du:-gxﬁdx"r%aﬁ) and dv=gvx—dx+%a§/ and so

2 2
du® +dv’ =(—aéy~dx+§y—dy] +(—g~‘idx+?ldyJ
2 2 2 2
= (931) +(§"—) gt | 20 Y dxdy + AN ay’.
Ox ox o oy ox Oy % %%

Note that since Mobius transformations are analytic, then the Cauchy-Riemann

Equations hold; thus

ou
ox
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Therefore

Sk GRS GRG]

Therefore

i+ {(_‘?}i)z +(‘a“v“)2}(dx2 )= 4[;8 ~~(J’—lﬂ2 +126x2 (v-1) (@ )

Ox

:4x4—8x2(y-—1)2+4(y—l)4+16x2(y—1)2 (dx2+a§z2 :4[x2+(y~1)2]2

[x2+(y—1)2}4 [xz—k(y—-l)zj4

Hence 3 7=
--y’ | (1-%-y7)
x*+ y—l)2
. L . . 4(dx +dy?)
The metric in the unit disk model of the hyperbolic plane is -(-———2———-—2—)7 .
l-x"-y

Let y(t)=(x(¢),»(t)), ast<b be a parameterized curve in the unit disk. Since we
showed there was an isometry from the upper half plane to the unit disk, then the length

of }/(l‘) is equal to some ¥ *(t) =h( }/(z‘)) in the upper half plane. The curve y* can be

parameterized as (u(t),v(t)), a<t<b where u and v are as given above. Then the
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\jdu +dv IZ\/de—mﬁz

hyperbolic length is f So the length of a curve in the unit

I—-x"—
2\/dx* +
disk model is J aj)
_x —
4 4
In the unit disk model, E = a2 F=0,and G =-——-——7 and hence we
(1-—u2——v ) (1-—-u2 —vz)

will use the equation K = -1 ( £, j +( G, J to find the curvature of the
2JEG \VEG ), \NEG ),
16v and G, = 16u

unit disk model. Note that E, = . —————— .
(l—uz——vz) (l—uz——vz)

Therefore
( 16v 16u
P -1 (1—u2~v2)3 (l—uz——vz)3
- , T 16 "’ 16 ?
(l—uz—vz)4 (l—uz-~v2)4 , (l—uz~vz)4
16v 16u
-1 (l—uz —v2)3 (1—u2 —vz)3

= 5 < 1 + 1 >

(1 u —v )7 (1 u? —-v2)2 ) (1 u -v )2 l




:—1(1——u2—v2)2( 8 J=—l.
O P

Thus the unit disk has constant curvature —1. This is what we hoped to get, since the

curvature of the upper half plane and the curvature of the pseudosphere is - 1.

We can describe isometries of the unit disk as linear fractional transformations just as

we did in the upper half plane. The isometries of the unit disk are obtained from

isometries of the upper half plane. Note that for two points P and Q in the unit disk,

we can denote j(P, Q) as the distance between the two points P and Q in the unit
disk and denote h(V(P), V(Q)) as the distance between two points V(P) and V(Q) in
the upper half plane. Since V(Z) is the inverse of the isometric mapping from the upper
half plane into the disk, then clearly J (P, Q) = h(V(P), V(Q)) If f (Z) is an isometry
of the upper half plane, then w(z) =U (Z) of (z) OV(Z) is a hyperbolic isometry of the

unit disk where U (z) = izﬂ and ¥ (z) = iz—l..
z41i —z+1

J(w(P).w(@))= (U (£ (7 (P)).U(£(7(9)))
=y (U (7 (P))- V(U (@) =l (7 (2). (7 (@)

=h(V(P).¥(Q))=J(P.Q).
Theorem 9.1: The isometries of the unit disk are the transformations of the forms

g(z) = az+p and k(z) =ﬂ where O and 8 are complex numbers such

—_

pz+a -pz+a

that |a| > |B).
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Proof: Let f(z)= az +z be any Mobius isometry of the upper half plane and so
cz+

a,b,c,d e R and ad—bc>0.

So

iz+1 az+b iz-1
w(Z)ZU(Z)Of(Z)OV(Z): z+1 Ocz+do—z+i

=iz+1o(ai—-b)z+(—a+ib) l:'a d +l ]Z+[ )]
2ti (ci-d)z+(-c+id) [(-b-c)+i(a~d)]z+[(-a c+b) |

Let az[(—-a—d)+i(c—b)] and ,B=[(—b~—c)+i(a——d)].

Then

w(z)=U(z)e f(2)V (z)= az+,-3—:.

Pz+a

Also
af ~|8} = [(-a~d)+i(c=b) | ~[(-b-c)+i(a=d)] =4(ad~bc)>0.

Therefore }alz > Iﬂl2 , and hence [al > l,Bl

Conversely, suppose w(z) = az:,aﬁz such that ‘al > | y/j l .
z

Then we can set

iz—-1 az+/)’ iz+1 az+b
—z+i ,Bz+a z+i cz+d’

F(z)=7(2)ow(z)°U(z)=
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where
a=—(a+c?)-i(,8—,§)
b=—(p+B)+i(a-a)
c=—(B+B)+i(a-a)
d=—(a+a@)+i(f-PB)

Note that a+&=2Re(a), B+ B =2Re(B), a—a=2iIm(e), and

B+pB=2ilm(f), and s0 a,b,c,d e R .

Also
ad —be ={(a + @) +(ﬁ—5)2}-[(ﬁ+ﬁ)z +(a—5)2}
=4(o@-pB)=4(\af -1 )>0.
Therefore f(z) is an isometry of the upper half plane.

Since W(Z)=U0f0V=UO(VOWOU)0V=(U0V)OWO(U0V)=w, then if follows

+p .
that w(z) = oz € is a Mobius isometry of the upper half plane.
pz+a
. . —az+f . . o
In a similar way it is shown that k(z) = fria is also an isometry of the unit disk. =
-pZ+a
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CHAPTER 10: HYPERBOLIC XY-PLANE

There is another representation of the hyperbolic plane that resembles the entire xy-

plane. We will denote this model by H. Let § =R? be a plane with coordinates (u, v)

o 0O 0
and define E={(—,—)=1, F= ~6-,— =0, and G= —(’2—,2 =e™. Using the
Oou Ou Ou ov ov ov

1 E, G
fact that K= > \/—EE {( \/E‘él +( \/—é;‘l} and after some algebraic calculations we

will see that this model also has constant curvature of -1. Note that £, =0 and

e

2u
Gu:2ez" and so K =— 1 { 2e __ 1 (26")=-—1-
2ell u . 2ell

Now consider the geodesics in this model. To find the geodesics define
¢:H->R>= {(x,y) eR*|y> O} by ¢(u,v)= (v,e"‘). Note that ¢ is differentiable
and since y > 0 then it has a differentiable inverse. Therefore ¢ is a diffeomorphism

and we can induce an inner product Ri by <d¢ (w,),d¢ (w, )>¢(q) ={w,w, >q . Note that

0 _ .
9 _9% ad ——=-¢"-~. Thus if follows from the inner product that
ox ov oy ou
0 0 0 0 1
E: — )=, :eZIi:__?’ F = ..@._,E_ :_e" _a_..’__a__ :O’ and
ox Ox Ov Ov ¥y ox oy ov Ou
G= 2,—9 =™ —Q—,-—a—— =—17. Therefore R? is isometric to H with the given
Oy Oy Ou oul 'y

inner product but Ri is the upper half plane. So H is also isometric to H2.
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CHAPTER 11: CROCHETING THE HYPERBOLIC PLANE

The hyperbolic models are illuminating but provide a distorted look through a rather
strange lens and do not reveal what a hyperbolic surface looks like in our world. The
search for a realistic model was in full force until about the nineteenth century. In 1901,
David Hilbert proved that it is not possible to embed the entire hyperbolic plane in R’.
In fact, he proved that it cannot even be immersed in R’ with self-intersections. But it
left some mathematicians with an interest in coming up with models for hyperbolic
surfaces. In R?, the plane can be tessellated with six triangles meeting at each vertex.
William Thurston found a low-tech approach to make a hyperbolic model, in the
1970’s. Thurston used paper and scissors and came up with a model made by gluing
triangles together. His idea was to approximate the hyperbolic plane by having seven
triangles meet at each vertex. A colleague of his at Cornell, Daina Taimina, used
Thurston’s model with her students. She had a hard time with the model because it was
very fragile; it would fall apart easily. She hated gluing the pieces together and came up
with the idea to crochet a model of the hyperbolic plane instead. Her idea was simple:
she started with a row of stitches and then would add a fixed amount of stitches each
row after that. She hoped that this would create a piece of fabric that became wider and
wider. After some trial and error she was able to create a model that has given important
insight into an abstract area of math. She was able to trace straight lines in and out of
the expanding flaps and realized she could trace parallel lines that diverged. The models
are not perfect and are only a rough approximation of what in theory should be a
smooth surface. Overall, the crochet model gives students a surface to hold and visually
experience the hyperbolic plane. In theory, if a piece of hyperbolic crochet had an
infinite number of stitches, it would be possible to live on that surface and walk in some

direction without coming to an edge.

Hyperbolic surfaces that surround a three-dimensional region increase the surface area
to volume ratio. Thus hyperbolic surfaces are favored by some plants and marine
organisms. The most commonly known organism that does this is coral. Coral needs a

large surface to absorb nutrition and thus grow in a hyperbolic way.
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Hyperbolic geometry was not always accepted as it is today. Hyperbolic geometry at
one point was considered to go against a sense of reality and many mathematicians did
not accept it as a geometry. Henri Poincare said it best, “one geometry cannot be more
true than another; it can only be more convenient.” (Bellos) Therefore every surface has
its own geometry and, for any practical purpose, we should choose the one that applies

best.
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