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Abstract.  Soil microbial communities control critical ecosystem processes such as decom-
position, nutrient cycling, and soil organic matter formation. Continental scale patterns in the
composition and functioning of microbial communities are related to climatic, biotic, and
edaphic factors such as temperature and precipitation, plant community composition, and soil
carbon, nitrogen, and pH. Although these relationships have been well explored individually,
the examination of the factors that may act directly on microbial communities vs. those that
may act indirectly through other ecosystem properties has not been well developed. To further
such understanding, we utilized structural equation modeling (SEM) to evaluate a set of
hypotheses about the direct and indirect effects of climatic, biotic, and edaphic variables on
microbial communities across the continental United States. The primary goals of this work
were to test our current understanding of the interactions among climate, soils, and plants in
affecting microbial community composition, and to examine whether variation in the composi-
tion of the microbial community affects potential rates of soil enzymatic activities. A model of
interacting factors created through SEM shows several expected patterns. Distal factors such
as climate had indirect effects on microbial communities by influencing plant productivity, soil
mineralogy, and soil pH, but factors related to soil organic matter chemistry had the most
direct influence on community composition. We observed that both plant productivity and soil
mineral composition were important indirect influences on community composition at the
continental scale, both interacting to affect organic matter content and microbial biomass and
ultimately community composition. Although soil hydrolytic enzymes were related to the mois-
ture regime and soil carbon, oxidative enzymes were also affected by community composition,
reflected in the abundance of soil fungi. These results highlight that soil microbial communities
can be modeled within the context of multiple interacting ecosystem properties acting both
directly and indirectly on their composition and function, and this provides a rich and informa-
tive context with which to examine communities. This work also highlights that variation in cli-
mate, microbial biomass, and microbial community composition can affect maximum rates of
soil enzyme activities, potentially influencing rates of decomposition and nutrient mineraliza-
tion in soils.

Key words:  continental scale; soil biota; soil enzymes, structural equation model.

INTRODUCTION

Understanding the biogeography of soil microbial
communities is of great societal and scientific impor-
tance due to the myriad of ecosystem services provided
by soil biota. Global scale patterns of microbial bio-
geography in the terrestrial environment have been well
studied (Zak et al. 1994, Fierer et al. 2009, Vogel et al.
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2009, Decaéns 2010, Nemergut et al. 2011) and efforts
continue with new synthesis efforts such as the Earth
Microbiome Project (Gilbert et al. 2014), the Global
Soil Biodiversity Assessment Initiative, the International
Soil Metagenome Sequencing Consortium, and others
(Vogel et al. 2009). The field of microbial biogeography
has the potential not only to help answer fundamental
ecological questions, but may also assist scientists and
land managers to utilize microbial communities to
increase plant productivity, reduce plant disease and
enhance soil health (Kourtev et al. 2002, Drenovsky
et al. 2009, Griffin et al. 2009, Decaéns 2010, Wu et al.
2011). Improved understanding of the biogeography of
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soil microbial communities may also advance spatially
explicit biogeochemical models grounded in microbial
ecology (Wallenstein and Hall 2011, Wieder et al. 2013).

Some of the first continental scale studies of soil
microorganisms focused on microbial abundance, which
showed that soil microbial communities are a consistent
fraction (~2%) of the soil organic carbon (OC), and are
strongly regulated by the composition and productivity
of the aboveground plant community (Zak et al. 1994).
More recent continental scale studies of microbial com-
munity composition and diversity have shown that there
is a strong biogeography to soil microbial community
composition (Drenovsky et al. 2009, Decaéns 2010, Wu
et al. 2011). Although the fundamental controls of any
biological community include selection, genetic drift,
dispersal, and random mutation (Hanson et al. 2012),
here we focus primarily on the selection pressures pro-
duced by the ecological systems. The fundamental fac-
tors affecting community composition include climate,
land use, and soil edaphic properties such as OC, pH,
and nutrient status. These factors affect soil microbial
community composition at local, regional and continen-
tal scales (Griffiths et al. 1998, Fierer and Jackson 2006,
Lauber et al. 2008, Angel et al. 2009, Fierer et al. 2009,
Vogel et al. 2009, Decaéns 2010, Nemergut et al. 2011,
Brockett et al. 2012). Microbial communities may also
be structured in part by soil mineral composition and
degree of weathering, as seen across soil chronosequence
and mineral studies (Kourtev et al. 2002, Moore et al.
2010, Hemkemeyer et al. 2014), but this has received
much less attention.

In a great majority of studies to date, the relationships
between microbial community composition and soil
properties are described using univariate statistical proce-
dures, with conclusions based on the selection of a few
variables from sets of highly correlated predictors. Within
this analysis framework, a change in one or a few domi-
nant factors are presumed to control community compo-
sition, and there is little discussion of how certain factors
may be acting either directly or indirectly on microbial
communities (Angel et al. 2009, Auguet et al. 2009,
Fierer et al. 2009, Vogel et al. 2009, Decaéns 2010,
Nemergut et al. 2011). Realistically, microbial communi-
ties exist within an ecosystem of interacting influences of
climate, plant communities, and soil resources. These
components themselves are also interrelated, complicat-
ing our ability to directly quantify relationships among
multiple interacting ecosystem properties and soil micro-
bial communities. However, we can explore relationships
among multiple ecosystem components including micro-
bial communities using structural equation modeling
(SEM). Structural equation modeling allows us to graphi-
cally represent the strength of the interacting relation-
ships present within soil ecological systems (Mitchell
1992, Grace et al. 2010, Jonsson and Wardle 2010). In so
doing, we can identify the relative importance of direct
and indirect processes influencing microbial communities
and their activities. Structural equation modeling has
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been used in the past to explore the relationships between
climate, soils, plant communities, and soil microbial com-
munities in arctic, dryland, and global analyses (Siciliano
et al. 2014, Tedersoo et al. 2014, Maestre et al. 2015).
The common thread among these studies is that climate
(primarily precipitation) indirectly affects soil microbial
alpha diversity (e.g., local richness) through impacts on
organic matter available to the microbial communities.
Beta diversity (species composition) was impacted by soil
pH when large gradients in pH were examined. However,
these studies typically avoided heavily managed lands,
and there was no examination of the linkages between
variation community composition and soil processes.

Microbial community composition and soil function
can be linked through the analysis of exo-enzymatic activ-
ity (EEA), which controls processes such as decomposi-
tion and nutrient release from soil organic matter
(Sinsabaugh 1994). Enzymatic activity has been used in
both conceptual and explicit models to predict, for exam-
ple, nutrient limitation effects on C cycling, temperature
acclimation of microbial communities, and soil carbon
storage (Waldrop and Firestone 2004, Allison et al. 2007,
Sinsabaugh et al. 2008, Wieder et al. 2013). Many of the
same factors that influence microbial community compo-
sition also affect EEA. Globally, soil enzyme activities are
tied to substrate availability, pH, precipitation, and
microbial nutrient demand (Sinsabaugh et al. 2008), but
some evidence suggests that EEA is also affected by the
size and composition of the soil microbial community
(Waldrop et al. 2004, Sinsabaugh et al. 2008, Drenovsky
et al. 2009, Decaéns 2010, Wu et al. 2011, Burns et al.
2013). Thus while our objective is to produce a compre-
hensive model of the ecological factors that directly and
indirectly structure microbial communities across multi-
ple land use and soil types, we also hypothesize that pat-
terns of potential microbial activity (enzyme activities)
are affected by community composition in addition to
soil edaphic variables.

We explored variation in microbial community compo-
sition and enzyme activity at the continental scale using
soils sampled along two transects across the U.S. (Smith
et al. 2009; Fig. 1). As background descriptive statistics,
we examined the relationships between microbial commu-
nities and categorical variables including land use and soil
order that are presented in Appendix S1. We then investi-
gated the direct and indirect environmental controls on
microbial biomass, microbial community composition,
and soil enzyme activity using SEM, with particular
emphasis on relationships among climate, soil properties,
and plant productivity.

METHODS

Soil sampling

We sampled two continental-scale transects including a
N-S transect extending from northern Manitoba to the
U.S.-Mexico border near El Paso, Texas, and an E-W
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Locations of the samples taken for the Geochemical Landscapes Project. Samples for microbial and geochemical analy-

sis were taken at ~40 km intervals along both longitudinal and latitudinal gradients from A horizon soils. Land cover map was
taken from the 2011 version of the National Land Cover Database (Homer et al. 2007) which was re-sampled from the original
30 m resolution to 250 m resolution using the majority land cover. [Color figure can be viewed at wileyonlinelibrary.com)]

transect that follows along the 38th parallel from the
Pacific coast north of San Francisco to the Atlantic coast
in Maryland (Fig. 1). Transects cross multiple climatic,
physiographic, land use, geologic, pedologic, and ecologi-
cal boundaries. Each transect was divided into 40-km seg-
ments. For each segment, a 1-km wide latitudinal strip
was randomly selected; within each strip, a potential sam-
ple site was selected from the most representative land-
scape within the most common soil type (Smith et al.
2009). Areas surrounding power plants, roadways, build-
ings, and other unusual landscape features were avoided.
Mineral soil horizons (A horizon) were sampled in the
summer and fall of 2004. Soils for microbial characteriza-
tion were sampled using sterile techniques. The A horizon
from within one 60 x 60 cm quadrant was either sam-
pled directly using a sterile stainless steel trowel, or a sho-
vel or auger if the A horizon was deep. Samples were
homogenized in a sterile glass or stainless steel bowl and
placed in a sterile 50-mL centrifuge tube. The tube was
sealed in a zip lock plastic bag for storage and was imme-
diately frozen or refrigerated for a maximum of 3 d before
being shipped and stored at —20°C prior to analysis. Soils
for physical and chemical analysis were taken

concurrently, air-dried and sieved to 2 mm. A total of
265 samples were sampled across the two continental gra-
dients. Of these, 185 were analyzed for phospholipid fatty
acid (PLFA) and soil chemical and physical analysis, and
a smaller subset of 108 for enzyme activities. Descriptive
land cover and land use data were collected through on
site observation and soil order was determined by using
latitude and longitude comparison to USDA databases.
All climate, soil chemical, mineralogical, and microbial
data were organized by soil order and land use and are
presented in the Appendix S1.

Chemical and mineralogical data

Chemical and mineralogical data collected from each
site include organic and inorganic carbon, pH, quantita-
tive mineralogy, and total concentration of 47 elements
including S, P, Ca, Mg, and K (Garrett et al. 2009,
Smith et al. 2009). Total carbon and nitrogen were
determined on dried ground samples by pyrolysis (Carlo
Erba NA 1500 CHN analyzer (Thermo Fisher Scientific,
Waltham, Massachusetts, USA)). Carbonate was deter-
mined as CO, by coulometric titration on a sample
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treated with 2 N HCIO4 (Brown et al. 2002), with an
lower limit of detection of 0.05%. Organic carbon was
calculated as the difference between total and carbonate
carbon. Major elements, including S, P, Ca, Mg, and K,
were analyzed by ICP-MS on sample digested in a mix-
ture of HCI, HNO;, HCIO4 and HF (Briggs and Meier
2002). Soil mineralogy including the percentage content
of plagioclase, potassium feldspar, and total clay miner-
als, was determined by quantitative X-ray diffraction
(XRD) analysis (Eberl and Smith 2009).

Climate

Climate data from each site were collected by spatially
joining the transect point sites to precipitation polygons
and temperature points from the closest location with
data available. The precipitation and temperature values
are from NRCS (Natural Resources Conservation Ser-
vice) PRISM Project (PRISM Climate Group 2006);
30 yr average annual precipitation for the conterminous
U.S. (1961-1990). The temperature values are 30 yr aver-
ages (1971-2000).

Plant production

The eMODIS Normalized Difference Vegetation
Index (NDVI) was used as a proxy for plant productiv-
ity, as it has been shown to correlate with photosyntheti-
cally active vegetation and daytime CO, uptake (Tucker
et al. 1985, Wylie 2003, Pettorelli et al. 2005). Normal-
ized Difference Vegetation Index was calculated from
average value composites at the resolution of 250 m for
all of 2004 (Jenkerson et al. 2010). Composites were put
into annual time series of 52 bands for each annual mul-
ti-band image. These temporal time series of NDVI were
then temporally smoothed to replace temporary drops in
NDVI associated with residual cloud cover in some of
the weekly NDVI composites (Swets et al. 1999).

Microbial community composition

Phospholipid fatty acid analysis was used to quantify
soil microbial community composition because it is a
relatively rapid and quantitative screening method for
describing microbial communities in soil and is corre-
lated with microbial biomass (White and Ringelberg
1997). Phospholipids are integral components of cell
membranes and are metabolized rapidly when a cell dies
in soil; therefore, they can be used to quantify living
microbial groups including fungi, Gram+ and Gram—
bacteria, and actinomycetes. Classification of PLFAs is
based chain length, degree of unsaturation, and substi-
tuted groups (e.g., methyls, hydroxyls, and cylopropane
rings; White and Ringelberg 1997).

Phospholipid fatty acids were extracted from triplicate
subsamples of soil in a chloroform/methanol/phosphate
buffer (1:2:0.8 v/v/v) with the volume of phosphate buffer
adjusted for existing soil-water content. Soils were shaken

M. P. WALDROP ET AL.

for 2 h, centrifuged, and the supernatant was decanted
into separatory funnel. Soils were re-extracted with an
additional extract solution, vortexed, shaken for 30 min,
centrifuged, and the second supernatant was added to the
first. The supernatants were combined with a PO, buffer
and CHCl;, shaken, and the phases were separated over-
night. The CHCl; layer was decanted and dried under N,
at 32°C. Phospholipids were separated from neutral lipids
and glycolipids on solid phase extraction columns condi-
tioned with CHCl;, with neutral lipids and glycolipids
eluted with CHCI; and acetone and polar lipids eluted
with methanol and air dried under N,. Polar lipids were
subjected to mild alkaline methanolysis to form fatty
methyl esters. Extracts were prepared with hexane contain-
ing the 19:0 lipid as an internal standard and analyzed by
gas chromatography (Hewlett Packard 6890, Agilent
Technologies Inc., Santa Clara, California, USA) using a
25 m Ultra 2 (5%-phenl)-methyl polysiloxane column
(J&W Scientific, Agilent Technologies Inc., Santa Clara,
California, USA). Peaks were identified using FAME
standards and MIDI peak identification software (MIDI,
Inc., Newark, Delaware, USA; Bossio and Scow 1998). Of
the 137 identified peaks, a group of 23 PLFAs were
selected to evaluate microbial community structure based
on presence in 75% of samples analyzed at 1 mol% or
greater. Individual PLFAs used to address microbial com-
munity structure were converted to mol% before being
incorporated into principal components analysis (PCA)
for data reduction using covariances among the data. We
used the sum of total extracted PLFAs (nmol/g) as an
index of total soil microbial biomass (Baath and Ander-
son 2003). On a subset of fifteen samples, the biomass of
microbial carbon was also estimated using the chloroform
fumigation direct-extraction technique (Vance et al. 1987).

Enzyme activities

Activities of B-glucosidase, arylsulfatase, phosphatase,
and N-acetylglucosaminidase (NAGase) were deter-
mined during short-term incubations on 1 g of air-dried
soil. The respective p-nitrophenyl (pnp) substrates used
in these four assays were 5 mmol/L pnp-B-glucoside,
5 mmol/L pnp-sulfate, 5 mmol/L pnp-phosphate, and
2 mmol/L pnp-B-N-acetylglucosaminidase. For B-gluco-
sidase activity the buffer was a pH 6 modified universal
buffer (MUB) and pH 12 tris-hydroxy aminomethane
(THAM) was added to stop the hydrolysis reaction and
to deprotonate the pnp, producing a yellow color mea-
sured at 420 nm (Tabatabai 1994). For the other pnp
assays, 50 mmol/L pH 5.8 acetate buffer was used and
NaOH stopped the reaction and developed product
color. Controls for both substrate (substrate + buffer)
and soil (soil + buffer) were also included and sub-
tracted from the assay measurement. B-glucosidase and
arylsulfatase were analyzed in duplicate at 37°C for 1 h.
Phosphatase and NAGase activities were assayed for
2-4 h at 22°C in a 96 well plate format allowing for eight
analytical replicates per sample. In the 96 well plate
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format, one g air-dried soil sample was added to 100 mL
acetate buffer (pH 5.0; 50 mmol/L), and homogenized
on a stir plate. About 100 pL soil homogenate was
added to 100 uL of buffered substrate. Plates were
placed in the dark and not shaken. At the end of the
assay, 100 pL of reaction product was pipetted to a new
clear plate containing NaOH to end the reaction and
develop the color. Color was measured at 405 nm on a
Biotek spectrometer (Biotek, Winooski, Vermont, USA)
after developing a pnp standard curve.

Phenol oxidase and peroxidase enzyme assays were
measured using the 96 well plate format at 22°C. About
5 mmol/L .-DOPA was used as the substrate in 50 mmol/
L acetate buffer. Peroxidase assay included an aliquot of
0.3% H,0, solution in each assay well. Assays were incu-
bated overnight and measured 450 nm on a Biotek
spectrometer after 100 pL was transferred to a new clear
plate (Miller and Dick 1995, Waldrop et al. 2010). A
standard curve was developed by oxidizing known quan-
tities of L-DOPA and measuring its absorbance.

Data analyses

Comparisons among soil orders and land uses were
made using ANOVA and Tukey-Kramer post hoc tests
(P < 0.05), after normalizing the data, using the JMP 9.0
statistical program (SAS Institute, Cary, North Califor-
nia, USA). Principal components analysis was used to
reduce the number of variables within the microbial,
chemical, mineralogical, and enzyme databases before
using them within the structural equation model. This
was done in order to create a few aggregate variables that
were representative of each dataset and could be
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interpreted in light of the most important trends within
each dataset. The PCA was conducted on covariances
because units and ranges of values were similar within
each database. Details of the analyses are given in Results.
We constructed an initial structural equation meta-
model (Grace et al. 2010) for evaluation based upon a
priori knowledge to represent a general hypothesis of the
effects of large-scale major environmental drivers on
microbial communities (Fig. 2). This initial model was
designed to allow us to evaluate the full set of measured
variables related to climate, plant productivity, and soil
organic and inorganic properties. We considered the
inclusion of latent variables to represent climate, soil
inorganic, and soil organic variables, though these were
eventually omitted as they were unnecessary to the
model. Variables were log transformed to meet assump-
tions of homogenous variances and normal distributions.
We used the SEM package (version 3.1-3, John Fox,
McMaster University, Canada) in R to estimate parame-
ters and test model-data consistency. The final model
was obtained by removing non-significant variables and
paths and adding additional paths as recommended by
modification indices (Grace et al. 2010, 2012). We com-
pared models using chi-square difference tests and AIC,
comparisons to arrive at the final best fitting model.

REsuULTS

Microbial PLFA data were reduced from relative abun-
dance data to a single new variable representing commu-
nity composition using PCA. This first single PC (PC1)
explained 40% of the PLFA dataset, and was strongly
influenced by several fungal and Gram— biomarkers (see
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Initial meta-model designed to represent possible relationships between climate, plant productivity, soils, and microbial

community composition and function. Ovals represent general theoretical constructs that encompass more than one measured vari-
able. Lines represent univariate relationships between variables. This initial hypothesized model was then modified during multiple
iterations of the SEM model through additions or subtractions of variables and relationships to provide the most robust model

based upon the AIC criterion.
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Appendix S1: Table S1). Thus increasingly positive values
for PC1 indicate increasing relative abundance of fungi
and some Gram— bacteria.

From the soil element concentration (geochemical)
dataset, PCA resulted in the first variable, explaining
51% of the variability, to be most strongly defined by Ca
(eigenvector [v] = 0.94) and carbonate (v = 0.26). This
new eigenvector was termed “CaCQO;”. The second prin-
cipal component of the geochemical database explained
another 22% of the variance, was described by iron
(v = 0.53) and magnesium (v = 0.77), and was termed
“FeMg” (see Appendix S1: Table S2).

Principal components analysis of the soil mineral
composition dataset revealed the first principal compo-
nent, explaining 59% of the database, was dominantly
quartz (v = 0.89) and was ignored because quartz is
highly resistant to chemical weathering, and thus is com-
monly distributed in soils. The second principal compo-
nent (explaining 14%) was potassium feldspar
(v = —0.42), plagioclase (v = —0.47), and 2:1 clays
(v = 0.55). This XRD variable was termed “Weathering”
due to the fact that during the course of weathering
k-feldspars and plagioclase, largely derived from granitic
rock, will be weathered out and 2:1 clays will form (see
Appendix S1: Table S3).

-0.48
Plant

productivity

A 4
H
0.29

Precipitation

Weathering
L 4 \
0.39 D42 \
0.20
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The PCA analysis of the soil enzyme data produced
two new variables. The first principal component, incor-
porating 43% of the variability in the dataset, included
B-glucosidase (v = 0.43), arylsulfatase (v = 0.52), and
phosphatase (v = 0.50), and we termed this eigenvector
“hydrolytic enzymes”. The second, incorporating 19% of
the variability in the dataset contained phenol oxidase +
peroxidase (v = 0.59), and N-acetyl-glucosaminidase
(v = —0.62), and we termed this second principal compo-
nent “oxidative enzymes” (see Appendix S1: Table S4).

Soil chemical, mineralogical, microbial, and enzy-
matic data were analyzed by one way ANOVA followed
by Tukey—Kramer post-hoc tests with land use and soil
order as fixed effects (Appendix S1).

Structural equation model

The most parsimonious model for predicting micro-
bial community composition and soil enzyme activities
at the continental scale included precipitation, plant pro-
ductivity, pH, soil mineralogy, microbial biomass, and
organic C as the primary exogenous and endogenous
variables (Fig. 3). The final y*> of the model was 23
(df = 19, P = 0.24), indicating good model-data consis-
tency. All parameters within the model interactions are

\
Microbial Organic 1
Biomass Carbon ~._ 0.14 \
~o Tl 1
049 o~ 0.49 oy
. \ .
SN \ Hydrolytic
~ ~) Enzymes
Microbial > Oxidative
Community e == == == = == Enzymes
Composition 0.18

Fic. 3.

Final structural equation model regarding the interactive controls of microbial community composition and soil enzyme

activities. All relationships are statistically significant (P < 0.05). Numbers near lines indicate the parameter estimate (correlation
coefficient) and its relationship (+ or —). The thickness of the arrow increases with the size of the correlation coefficient. Solid lines
indicate the model without enzyme activities and dashed lines indicate additional model parameters and correlations with enzymes
included. R> for endogenous variables were: hydrolytic enzymes (0.76), oxidative enzymes (0.16), soil carbon (0.25), plant
productivity (0.83), 2pH (0.57), microbial biomass (0.22), and community composition (0.34). Statistics for non-enyzme model:
Model AIC = 50, y~ =12, P = 0.21, df = 9; For model including enzymes: Model AIC = 74 XZ =23; P =024, df = 19. R for

non-enzyme variables did not change when enzymes were included.
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well supported. An SEM model without the inclusion of
soil enzymes was also evaluated, as it allowed for a
greater number of observations. The structure and path
coefficients of this “no enzyme” model did not differ
from the final model with enzymes included.

Plant productivity and microbial biomass were the
most influential direct controls on community composi-
tion within the model. Precipitation played an indirect
role in the model by controlling microbial community
composition through its effects on plant productivity
(+), soil pH (—), and soil OC concentrations (+) (Fig. 3).
Soil pH was indirectly related to microbial community
composition through its effect on soil OC content (—)
and microbial biomass (+). Interestingly, although soil
OC concentration increases as soil pH declines, micro-
bial biomass and pH are positively related such that the
ratio of microbial biomass to soil OC is lowest at low
pH and increases as soils become more alkaline (Fig. 4).
Soil hydrolytic enzymes were found to be a function of
precipitation, soil OC, and microbial biomass, but a por-
tion of the enzyme pool, made up of oxidative and
chitin-degrading enzymes, was found to also be a func-
tion of microbial community composition (Fig. 3). Sev-
eral parameters were not important in the final SEM
model and were excluded. These included mean annual
temperature, soil texture, carbonates, soil nutrients, and
latitude and longitude.

Discussion

Soil microbial communities and their activities exist
within a changing and interacting set of climatic, biotic,
and edaphic properties of ecosystems. Thus to under-
stand microbial communities is to understand how mul-
tiple factors within ecosystems also interact. For
example, as microbial communities respond to climate
change, it will be important to understand how plants
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FiG. 4. Relationship between soil pH and microbial bio-
mass (as PLFA) per unit soil organic carbon. The declining
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and soils may also change, and what factors microbial
communities are directly responding to (e.g., available
soil C, which may be relatively rapid) or indirectly
responding to (e.g., soil weathering or changes in cli-
mate, which could be much slower). We find SEM to be
helpful in aiding our ability to investigate the direct and
indirect influences that control microbial communities.
Our selected model shows that climate, specifically mean
annual precipitation, can be viewed as the ultimate “dis-
tal” control (sensu; Firestone and Davidson 1989) of
microbial community composition through its effects on
plant productivity and soil edaphic properties such as
pH and soil OC. Soil pH and OC, in turn, are strong
determinants of microbial biomass and community com-
position. Climate, pH, and OC have long been shown to
be important factors controlling soil microbial commu-
nity composition at local, regional and continental
scales, likely because of their influence on the types and
quantity of carbon compounds available to soil micro-
bial communities (Angel et al. 2009, Drenovsky et al.
2009, Brockett et al. 2012). However, it is interesting to
note that MAP and not MAT was the strong climatic
influence on microbial community composition and
enzyme potentials, despite the well-known temperature
sensitivity of soil microbial communities.

Plant productivity, microbial biomass, and OC were
the most important “proximal” controls on microbial
community composition and enzyme activities. Positive
relationships among microbial biomass, OC, and
enzyme activities has been observed in a variety of stud-
ies and provide evidence that microorganisms are largely
carbon limited in soils (Zak et al. 1994). The importance
of soil OC in structuring soil microbial community com-
position has been observed, although it is often sec-
ondary to the strong influence of soil pH, which is
discussed in more detail below (Griffiths et al. 1998,
Lauber et al. 2008, Fierer et al. 2009). What is unique
about our statistical model is that rather than relying on
only soil OC concentration as an explanatory variable,
we also utilized microbial biomass and plant productiv-
ity metrics. Microbial biomass and plant productivity
are likely a better reflection of the pool of available C
substrates for microbial consumption than total SOM,
much of which is inaccessible to the microbial commu-
nity. Thus by using the additional metrics of C resource
availability to the microbial community, we found
that these metrics were important direct controls on
community composition that has not been as widely
examined.

Interestingly, we found that soil %N and C/N ratios
were not important contributors to the SEM model,
despite the strong relationship between these metrics
and microbial community composition (particularly fun-
gal/bacterial ratios) observed at large continental scales
(Fierer et al. 2009). In our analysis, microbial commu-
nity composition is largely affected by the relative abun-
dance of fungi (see Appendix S1: Table S1), and thus
would be expected to show this similar pattern.
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However, in addition to various forest, grassland, and
shrubland soils, our study also includes cropland soils,
which are absent from Fierer et al. (2009). Agricultural
soils contained moderate to high levels of fungal bio-
mass despite having low C/N ratios (see Appendix S1:
Table S5), a feature that may have reduced the strength
of the relationship between soil C/N and our metric of
microbial community composition. Additionally, the soil
C/N ratio covaried with NDVI (r = 0.49), and thus
including plant productivity in the SEM reduced the
importance of soil C/N.

The NDVI-generated index of plant productivity was
a central component of the SEM and allowed for a simi-
lar plant productivity metric to be compared from hun-
dreds of sites at the continental scale within the same
season. Few large scale studies have included remotely
sensed plant productivity to provide data relative to
changes in soil communities, though it is used in plant
and animal ecological studies (Bailey et al. 2004, Pet-
torelli et al. 2005). Given that microbial communities
and soil edaphic properties are so strongly tied to plant
inputs, studies of microbial biogeography would benefit
from remotely sensed measures of plant productivity, as
they likely are a better indicator of belowground
resource flux than is plant biomass or even plant com-
munity composition (Hamada et al. 2014).

Soil pH was an central factor in the SEM model,
which is consistent with results of other large scale stud-
ies of microbial community composition and soil
enzyme activities (Fierer and Jackson 2006, Sinsabaugh
et al. 2008, Fierer et al. 2009). However, our study found
that pH is not a direct driver of community composition,
but rather contributes indirectly. Multiple processes in
soils are a function of pH, from cation exchange to ATP
membrane transport. However, the SEM suggests that
pH also has strong effects on carbon resource supply
to the microbial community. As soils become more
alkaline, the ratio of microbial biomass to soil OC
concentrations increase, indicating that the size of the
bioavailable C pool may have increased (Fig. 4), which,
from what we know from the SEM model, could drive
changes in microbial community composition. In the
SEM model, soil pH is a function of plant productivity
and precipitation, but we were surprised that variables
representing soil weathering and soil parent material
were not important additional contributors to the model
(especially as they affect pH), perhaps because they
co-vary with the included variables. As reflected by its
central role in the SEM model, soil pH is a master vari-
able in many biogeochemical processes (e.g., organic
matter hydroloysis, acid-base reactions in soil pore
waters) and integrates several ecosystem-scale variables,
including climate, microbial biomass, soil carbon, and
plant productivity. It is likely for these reasons that pH
has been observed to be such an important driver of soil
microbial community composition.

The SEM model also revealed that soil mineralogy
has an indirect influence on microbial community
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composition, through its effect on stabilizing soil organic
matter. Few studies have shown relationships between
mineral composition and microbial community compo-
sition (Moore et al. 2010), perhaps because mineral
composition may not vary strongly at local or regional
scales but also because soil mineralogy may not have a
strong direct influence on community composition. At
the large spatial gradients such as the continental tran-
sects utilized in this study, large variations in soil miner-
alogy are present, and the indirect influence on
community composition could be observed through
mineral composition influence on soil OC (Masiello
et al. 2004, Rasmussen et al. 2005). It is important to
highlight that the SEM model supports the idea that the
mineral composition of soils is a direct stabilizing force
on the long term stability of soil OC (Doetterl et al.
2015). Precipitation acts indirectly on soil OC through
effects on weathering, soil pH, and plant productivity,
and is an important component of ecosystem C dynam-
ics globally (Carvalhais et al. 2015). The low ratio of
PLFA/soil C in low pH/high carbon soils (Fig. 4), could
cause the low rates of soil respiration per unit C in high
C soils observed elsewhere (Doetterl et al. 2015), and a
positive feedback to C stability in some systems.
Microbial community influences on soil enzyme activ-
ities is important because different microbial groups,
most specifically fungi and bacteria, may differ in the
types and amount of enzymes they produce, as well as
their regulating factors (Sinsabaugh 2010, Strickland
and Rousk 2010). Thus a greater understanding of the
composition of soil microbial communities could pre-
sumably be of value in predicting soil enzyme potentials,
which are often the rate limiting step in decomposition
processes (Sinsabaugh et al. 2008, Sinsabaugh 2010).
Soil enzyme activity is a product of pools of enzymes
physically located on the soil matrix, so called ‘abiontic
enzymes, as well as those directly associated with intact
microbial cells (Skujin§ and Burns 1976). Thus the
enzyme potential measurements we make reflect both
long-term microbial production of enzymes and the con-
ditions that promote the stabilization of those produced
enzymes in the soil matrix. The SEM model also sup-
ports the idea that soil enzymes are stabilized in the soil
matrix and yet are also a reflection of the extant micro-
bial community. Hydrolytic and oxidative enzyme activi-
ties were explained largely by microbial biomass, and
less so by organic C or our “mineral weathering” vari-
able, where many enzymes would likely be sorbed. This
pattern may be reflective of the fact that microbial cells
are the source of the most active enzymes and the loca-
tion of most rapid C turnover, and enzymes sorbed to
SOM and mineral surfaces play a minor role. Interest-
ingly, although the composition of the soil microbial
community was unrelated to hydrolytic activities, oxida-
tive enzyme activities and enzymes involved in chitin
degradation were related to microbial community com-
position. The microbial community metric PC1 was
strongly influenced by the soil fungal biomarkers, which
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can produce greater quantities of oxidative enzymes for
lignin degradation and NAGase for chitin degradation
(Sinsabaugh 2010, Strickland and Rousk 2010, Kluber
et al. 2011). Thus, these data support the idea that
although hydrolytic enzyme activities are largely con-
trolled by the composition and abundance of C sub-
strates, pH, and precipitation, oxidative and chitin
degrading enzymes may also be influenced by variation
in fungal abundance and/or composition. Given that
new microbial-based carbon cycling models indicate that
enzyme kinetics may be critical for understanding fate of
carbon in soils globally (Wieder et al. 2013), it becomes
increasingly important to understand what biological,
edaphic, and climatic variables influence the enzymatic
properties of soils.

This project integrates several large geochemical and
microbial datasets across broad land use categories;
however, there are several limitations to the collected
data. First, PLFA biomarkers represent broad func-
tional microbial groups and do not provide the taxo-
nomic resolution present in 16S and 18S pyrosequencing
approaches. Also, several variables that may have been
important contributors to the model were not available,
including soil orthography or elevation changes, season-
ality, and land use history.

Although SEM presents an integrative model of
hypothesized drivers controlling microbial communities,
it does not present the entire picture. This study is pri-
marily focused on large-scale patterns in microbial com-
munity composition, and only one-third of the
variability in community could be explained by our
model. At the local and regional scale, influences such as
recent site history, land use, and plant community com-
position likely play an important role in structuring
communities (Martiny et al. 2006, Drenovsky et al.
2009). Indeed, although the PLFA method has been a
robust fingerprinting technique for comparing microbial
communities among plant communities, soils, land uses,
and climates (Baath and Anderson 2003, Drenovsky
et al. 2004, Brockett et al. 2012, Welc et al. 2012), we
could not strongly differentiate microbial communities
by land use or soil type (see Appendix S1). But given the
large area covered by our transects, and the variability at
that scale, perhaps that is not a surprising result. Addi-
tionally, fundamental ecological processes such as dis-
persal limitation, mutation, and drift were not
considered in our study, and could help to explain some
of the remaining variation in community composition
(Petraitis et al. 1996, Martiny et al. 2011, Hanson et al.
2012).

In conclusion, SEM presents a way of visualizing how
climate, soils, plants and microbial communities interact
directly and indirectly at the continental scale. The pat-
terns observed are supportive of what is currently known
about microbial biogeography, and contribute new infor-
mation about the strength of interactions among ecolog-
ical variables in structuring microbial communities and
their activities. This study underscores the importance of
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carbon resource availability and plant productivity in
structuring soil microbial communities at the continental
scale. It also highlights the central role soil pH plays in
soil systems, both reflecting variation in climate and
plant productivity, and affecting carbon resource supply
to microbial communities. Finally, this work highlights
that although hydrolytic and oxidative enzymes are a
function of the microbial biomass, soil C, and precipita-
tion, oxidative enzymes also seem to be affected by vari-
ation in community composition, in part due to changes
in fungal abundance. Because soil enzymes are critical to
carbon turnover, understanding variation in microbial
community composition, particularly of fungi, could be
used to modify potential rates of C cycling in mechanis-
tic models. In future studies and synthesis activities,
SEM has the potential to expand our understanding of
the microbe-environment system (Bowker et al. 2010,
Delgado-Baquerizo et al. 2013, Eisenhauer et al. 2015).
Ideally, it would be used in combination with manipula-
tive experiments (Wootton 1994, Gough and Grace
1999) to test hypotheses regarding which factors within
a path diagram are vulnerable or resilient in response to
climate or land use change.
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