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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 300, Number 1, March 1987 

PERIODIC PHENOMENA IN THE CLASSICAL 
ADAMS SPECTRAL SEQUENCE 

MARK MAHOWALD AND PAUL SHICK 

ABSTRACT. We investigate certain periodic phenomena in the classical Adams 
sepctral sequence which are related to the polynomial generators V,7 in ' (BP). We 
define the notion of a class a in ExtA (Z/2, Z/2) being v,,-periodic or v,,-torsion and 
prove that classes that are v1-torsion are also vk-torsion for all k such that 
0 < k 6 n. This allows us to define a chromatic filtration of ExtA (Z/2, Z/2) 
paralleling the chromatic filtration of the Novikov spectral sequence E2-term given 
in [13]. 

1. Introduction and statement of results. This work is motivated by a desire to 
understand something of the periodic phenomena noticed by Miller, Ravenel and 
Wilson in their work on the Novikov spectral sequence from the point of view of the 
classical Adams spectral sequence. The E2-term of the classical Adams spectral 
sequence (hereafter abbreviated clASS) is isomorphic to ExtA(Z/2, Z/2), where A is 
the mod 2 Steenrod algebra. This has been calculated completely in the range 
t - s < 70 [17]. The stem-by-stem calculation is quite tedious, though, so one looks 
for more global sorts of phenomena. The first result in this direction was the 
discovery of a periodic family in v*(S0) and their representatives in ExtA(Z/2, Z/2), 
discussed by Adams in [2] and by Barratt in [4]. This stable family, which is present 
for all primes p, is often denoted by { at } and is thought of as v1-periodic, where v1 
is the polynomial generator of degree 2(p - 1) in 7r*(BP) = Z(p)[v1, v2, ... ]' Using 
the Novikov spectral sequence based on the spectrum BP, the families { f3) } and { Y, } 
have been investigated for sufficiently large odd primes [13]. These are v2- and 
v3-periodic families, respectively. In [6 and 10], a start was made toward understand- 
ing these vi-periodic families from the point of view of the clASS. Here we continue 
this effort, defining the concepts of vi-peridocity and v,-torsion in Ext A(Z/2, Z/2) 
for all i. 

Our method of study is to utilize certain Hopf subalgebras of A. Let A,, denote 
the Hopf subalgebra generated by (Sqo, Sq, Sq2,.. . ., Sq2"). Then ExtA(Z/2, Z/2) 

lim k ExtAk(Z/2, Z/2). Our first result is: 

THEOREM A. For i any positive integer, there exists a unique nonzero divisor 

wi E Ext2'1+'2'+1(2'+1-1) (Z/2 Z/2) 
A, 
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192 MARK MAHOWALD AND PAUL SHICK 

such that wi restricts nontrivially to ExtE[Q](Z/2,Z/2), corresponding to the class 
v21+ E 7r*(BP). e 

We hereafter denote wi by v2' 1 E ExtA,(Z/2, Z/2). For k > i, there is also some 
power of vi present. In fact, we have the following: 

THEOREM B. For k any positive integer, there exist positive integers N1, N2,..., Nk 
such that 

Z/2[ ho, V (4N) v(8N2)..., v(2 1N,) ...v(2 k+lNk)] C EXtAk(Z/2, Z/2). 

Note that Ni also depends on the value of k. Note also that Nk can be chosen to 
be 1 by Theorem A. In particular, Theorem B implies that for all k > i, some power 
of v2'+' is present in ExtAk(Z/2, Z/2), with all of its powers nontrivial. For k > i, 
this choice of VN is not unique. For each k > i we localize ExtAk(Z/2, Z/2) with 
respect to vi. This gives a map 

fi: ExtA(Z/2, Z/2) -1 lim [Ext Ak(Z/2, Z/2) ( vl)] 

k 

which enables us to define the following concept. 

DEFINITION (3.8). X E ExtA(Z/2, Z/2) is v1-periodic if fi(x) 0 0, and is vi-torsion 
otherwise. 

Notice that the above definition is equivalent to the following: if 

qk* ExtA(Z/2 Z/2) ExtAk(Z/2, Z/2) denotes the natural projection, then x E 

ExtA(Z/2, Z/2) is vi-periodic if there exists a K > 0 such that q*(x)(v7 N)s = 0 
for all s > 0, for all k > K. 

Our main theorem is 

THEOREM C. If x E ExtA(Z/2, Z/2) is va-periodic, then x is also Vn k-periodic for 
all k > O. 

Equivalent, if x E ExtA(Z/2, Z/2) is va-torsion, then x is also vk-torsion for all k 
such that 0 < k < n. 

Analogous results are known for elements x E M, where M is a BP*BP-comodule 
[9]. Our proof of Theorem C is a simplified version of Johnson and Yosimura's proof 
of the BP-setting result. 

Theorem C allows us to define a filtration 

COROLLARY D. There is a filtration, which we call the chromatic filtration, 

ExtA(Z/2, Z/2) = F 1 D F0 D F1 D D Fi D 

such that Fi - Fi,1 is the set of classes that are vi1,-periodic but vk-torsion for all 
k < i. 

This paper is organized as follows. In ?2, we construct our basic took, which is 

used for calculating Ext-groups. It is a variant of the Koszul resolution. In ?3, we use 
this resolution to produce the periodicity elements of Theorem A. We also prove 
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Theorem B and develop the concept of v,-periodicity in ExtA(Z/2, Z/2). In ?4, we 
construct certain operations 

rj: Extj',(Z/2, Z/2) -* ExtC J2k (Z/2, Z/2) 

for k > 1, and state their basic properties. These are related to a certain decomposi- 
tion of A//Ak given in [11]. Finally, in ?5, we use these operations to prove 
Theorem C and deduce Corollary D from it. 

Throughout the paper, we use cohomology with Z/2 coefficients. By "space", we 
mean a connective spectrum localized at the prime 2. Odd primary analogs of these 
results are known, and will be discussed elsewhere. These results form the basis of 
the first chapter of the second author's Ph.D. thesis, completed at Northwestern 
University in 1984. We would like to thank Wolfgang Lellmann, Ralph Cohen and 
Mike Hopkins for many helpful discussions. We also thank the referee for his 
helpful comments and for pointing out an error in the original proof. 

2. Koszul-type resolutions for calculating Ext-groups. In this section, we develop 
the machinery necessary to produce the periodicity elements in ExtA (Z/2, Z/2) for 
i > 1. The basic tool used is a variant of the Koszul resolution [8] in which one 
"resolves" a polynomial algebra using an exterior algebra. A more concise account 
of this material appears in [7]. 

We begi&n by constructing the Koszul resolution complex. This will be an exact 
sequence to which the functor ExtA(-, Z/2) will be applied to get a spectral 
sequence. We recall that the dual of the Steenrod algebra, A*, is a polynomial 
algebra Z/2[41, 42' . . . ], where the degree of (i is 2' - 1. Note that A* is both a right 
and left module over A, with the actions given by Sq((k) = (k + (k~2_ and (k)Sq = 

(k + (k-l where Sq = ESq'. It is shown in [14] that X(A//AJ)* 
Z/2[4'12, 42, . . ., J?+1, (+29 (j+3' . .. ], where X denotes the canonical antiautomor- 
phism of the Steenrod algebra and A//Aj denotes A ?A Z/2. This isomorphism is 
one of algebras and left A-modules, where the left A-action on the polynomial 
algebra is given by the above formula, extended by the Cartan formula. This result 
generalizes to show that X(AJ//Ai_D* E(4', , ..., h-) both as algebras 
and as left A -modules with the above A -action. If we denote X((k) by Dk' then we 
see that (Ai//AAi )* _ E(g7, t22 . . ., ), with the Ai-action now being given on 
the right: 7 1j Sq2k = ik l and 1' Sq2 = 1, extended by the Cartan formula. For 
convenience, we denote the exterior algebra (AI//A i-)* by E(i). It is important to 
note that E(i) is an Ai-module but not an Ai_1-module. For example, (A1//AO)* 

E(g12, 2) cannot be an A-module since Sq2 Sq1 Sq2 is nonzero on the top class 

;1 2. By the Adem relations, Sq2 Sq1 Sq2= Sq1 Sq4 ? Sq4 Sq1, so that if E(1) 
(A1//A0)*, it must have a nonzero class of degree 1 or 4, which it does not. 

As an Ai11-module, we can decompose E(i) into a direct sum: E(i) 
D >E0 E(ji), where E( i) is given as a Z/2-vector space as the span of monomials of 

length a, x1x2 ... x0, where each Xje (g"2,''2 ..., i?1) and X Xk for j 0 k. 

Each of these E0(i)'s is closed under the Ai-1-action inherited from E(i) and is also 
an A-module. 



194 MARK MAHOWALD AND PAUL SHICK 

We now define the polynomial algebra we will use to resolve E(i). Let R(i)= 

Z/2[g' t2 
2 

... , ?i+l] the graded polynomial algebra on generators t2, 

+ 1. This is an A-module, with right action given by g2kl7Sq22 = g2k 
and '1 Sq2 = 1, extended by the Cartan formula. If we consider just the Ai_1-mod- 
ule structure that this imposes on R(i), then we can decompose this into a direct 
sum: R (i) E > 0R. (i). Here, R ,(i) is given as a Z/2-vector space as the span of 
monomials of length a in (2, i..., ). Each of the R0(i)'s is a separate 
A-module. 

To construct our resolution, we form the right Ai-modules Er(i) ?Z/2RS(i) 
A 

where r, s > 0. Here " ? Z/2 " means tensoring over Z/2 with the A i-action given by 

the Cartan formula. Actually, each of these Er ?Z/2 R 's is an A-module, but we 
need only the Ai-module structure. We construct maps krs : Er ?9Z/2 Rs sEr-i 

?Z/2 Rs+,by 
r 

kr,s(XlX2 * Xr)= EX1 * * 
. 

Xr 2 XJP, for all r > 1, s > O. 
j=l 

To see that these are Ai-maps, consider 

kr,s [(XlX2 Xr 2 p) Sqm] = krs[s (Xb,Xb2 Xbr) 2 p Sq(mEar)] 

where M runs through the set of all sequences (a,,..., ar) such that xt Sqat = Xa . 

Evaluating kr,s on this, we get 

E(XbXb2 . . 
Xbj 

... 
Xbr) 

? Xbp Sq(rn-a), 

which is exactly [krs(XIX2 ... Xr ? p)]Sqm. We compose these Ai-module maps 
into a sequence, recalling that Er = 0 for r > i + 1: 

O El+l ? Rs Ei X Rs+l *> Eo Rs+i+l -> 0. 

These sequences are exact, as one can check, although this is quite tedious. We can 
get around this by summing the sequences over a constant s: 

0 Ei+l C ) Rs+2 

0 E El+ ? Rs+l El ?) Rs+2 - 

0 Ei+l R( R Ei ?) Rs+l Ei-, ?) Rs+2 . 

0 Ei+l X9 Rs_l Ei X9 Rs Ei-I (9 Rs+l El-l (9 Rs+2 *- 

Eo E9 Rs-I '' 

0 

The result is a sequence of Ai-modules: 

(2.1) ? > Z/2 -E(i) X RO(i) -> E(i) C RI(i)* 
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which is exact by the classical result of Koszul. The differential is given by 
r 

da (XiX2 ...Xr) C) p] = E (XI ... 
XiIj 

I 
*Xr) ?9Xjp* 

j=l 

Denote the dual of Rj(i) by Nj(i). Then, dualizing the exact sequence of right 

Ai-modules in (2.1), we obtain 

LEMMA (2.2). The sequence 
a0 a,, 0 I " 

0 <- Z/2 AiA//Ai1 ? No(i) * * * Al//Ai-1 ? Nj(i) * * a 

is exact as a sequence of left A i-modules. 

We need the following lemma. 
L 

LEMMA (2.3). For any Ai-module M, Ai//Ai-I ? Z/2M Ai ?A,_1M, as left 
L 

A.-modules, where " ?A 1" means tensor overAi1 with theAi-action taken on the left 

factor. 

A proof of this lemma can be found in [19]. 
We have now completed the proof of the following result. 

THEOREM (2.4). For the family of A-modules Nj(i), a > 0, and Al-maps da: 

A i ?A, Nc?1+ l(i) -Ai A ?A, Na(i) defined above, the sequence 
a0 a a,,, a0 

0 Z/2 Ai ?A,_ NO(i) Ai OA _,Nl(i) i * * A, i?A N,(i) . .. 

is exact as a sequence of Ai-modules. 

We refer to this as the Koszul-type resolution for Z/2 over Al (KRi or KR if i is 

understood). 
Also as an easy consequence of 2.4 we have 

COROLLARY (2.5). For M any left Ai-module, the complex 
f ao a,,,0 a01 all 

O- M <-A 
OA, 

NO(i) ? 2M * . - AX ?A N0(i) z/2M+* 

is exact (KRi(M)). 

The usefulness of such resolutions is that one can apply various functors to them 

to obtain spectral sequences. Our goal is to produce a spectral sequence converging 

to ExtA, (M, Z/2) for M an Ai-module. To this end, we divide the complex of (2.4) 

into short exact sequences: 

(2.6) 

0 .4 Z/2 -+--A1 Nji) Ai OA,-, N0i) 

0 o 0 0 
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We apply the functor Ext-a' t(-, Z/2) to (2.6). This associates to each short -exact 
sequence 0 -MaA -> A, ?A N Ma_ -I 0 a long exact sequence: 

(2.7) ExtA at(MU - Z/2) Extj 
a 

t( 
AiA,- No, Z/2) 

k i It 
k Ext' Mu, Z/2) Exts Z/2) 

We fit these long exact sequences together to form an exact couple: 
D ajs t Exts-' .t( M Z/2) 
* a st= ExtsA-at(Ai A N Z/2) _N ExtsA t(N, Z/2) 

by the change of rings isomorphism. The maps in the long exact sequence (2.7) give 
the maps in the exact couple 

D*,*,t D*,*,t 

k k-i 

These maps have the following trigradings: 
a s t 

i: (-1,0,0) 

j: (+I, +I,o) 

k: (0,0,0) 

Thus, dr: EraUS t Ea+r,s+l,t 

To see to what the spectral sequence converges, one forms a double complex, 
taking a projective resolution of each term of the complex (2.4). The resulting 
Grothendieck-type spectral sequence clearly converges to ExtA(Z/2, Z/2). This 
completes the proof of the following result. 

THEOREM (2.8). For i any positive integer, there is a family of A-modules, N,(i), 
a > 0, defined above, such that for any Ai-module M there is a trigraded spectral 
sequence converging to Extsjt(M, Z/2), with 

El ExtsA-Galt( N ( i) O M, Z/2) . 
This is called the Koszul spectral sequence for M over AI (KSSi(M)). Note that a 

trigraded spectral sequence is a family of spectral sequences, one for each t. 
Theorem (2.8) allows us to compute ExtA (M, Z/2) in terms of 

ExtA-1( Na ? M, Z/2). 

This makes calculation of ExtA1(M, Z/2) very easy since ExtA0(-,Z/2) is quite 
simple to compute. ExtA2(M, Z/2) is also fairly tractable for reasonable A2-modules 
M, as seen in [7], where ExtA(H*RPO, Z/2) is calculated for all N. One should 
note that the d1-differentials in the KSS are induced from the maps a. of the 
complex (2.4). These are Ai-maps, but are not extended Ai 1-maps. That is, da is not 

given as idA ? (No +- N+ 1) for any A, I l-map f. Thus the dl-differential in the KSS 
need not respect the Yoneda product structure in ExtA_-_(-, Z/2), although there is 
a product present. 
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We conclude this section with an easy proof of the well-known "ledge theorem." 

THEOREM (2.9) ("Ledge Theorem"). Let M be a finite Ai-module such that Mr = 0 
for r > m. Then Ext't(M,Z/2) = 0 fort - s > (21? - 2)s + m. 

PROOF. We use induction on i, with the initial case, i = 1, clear from calculating 
by a minimal resolution. We assume that Exts,t 1(P, Z/2) = 0 for t -s > (2i - 2)s 
+ m, for P any A 1-module having Pr = 0 for r > m. Consider any Ai-module M 
satisfying the hypothesis of the theorem. Then there is a KSS: 

Ext,-, t(N (i) ? M,Z/2) -> ExtA,( M,Z/2). 
The top class of Na ? M is in dimension < (2i+? - 1)a + m, by our definition of 
Na. Thus, 

Exts - ajt(Ng(i) X M,Z/2) = 0 for t-s + a > (2i -2)(s- ) 

+(2i' - 2)a + m 
i.e. 

t - s > (2i - 2)s + 2a + m. 
Since 0 < a < s, we have Exts,'(M, Z/2) = 0 for t - s > (21+1 - 2)s + m. 

3. Some periodicity elements. In this section, we use the machinery developed in 
?2 to construct certain periodicity elements in ExtA (Z/2, Z/2). Our first main result 
is 

THEOREM A. For i any positive integer, there exists a unique nonzero divisor 
W E Ext 211211(2?'-1)(Z/2, Z/2) such that w, restricts nontrivially to 
Ext E[Q, ] (Z/2, Z/2), corresponding to the class vi7 E sr(BP). 

We hereafter denote wi as vf E ( ExtA (Z/2, Z/2). 
PROOF. Consider the module R0(i) defined in ?2, with a = 2+?1. The top class in 

g h 

RO(i) is ti+? 1ti+ I ... I* *i+ = (+ g. Define maps Z/2 -* R0(i) -- Z/2 by g(1) 

= (?i+0) , hf((i+?)] = 1, both 0 otherwise. Sq2' -Sq? acts nontrivially on the 
class (, +1+)', but Ai acts trivially on it since Ai acts trivially on any 2i+ 1st power. So 
h and g are Ai-module maps that split the class (?i+1)' off from Rj(i). We can 

tensor with E(i) to get E((i) E (i) ? R(i) E(i). Dualizing, we get 

(3.1) A, ?A, Z/2 Ai A )A__ N (zi) , 0A 1Z/2. 

This extends to a splitting of complexes: 
(3.2) 

aO a, 
A,? A,_1 Z/2 ,- AA,-1 N1 < 

Jh, 
a 2 a0l a0 

A- A( ?A, Ng, < Al ?A,_1 No Ai ?A1 N0. 

aO a, 
Ai (A,-1 Z/2 Ai ?A,-1 N1 <, * 
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Here, hi(x ? y) = h(x) ? [(?i+1)0*Y] and 

g1(x ) = x ? r if y r= 

0 ? lf(,) + Y 

Also, it is understood that NO(i) 7 Z/2. Recall that the KSS for ExtA (Z/2, Z/2) is 
obtained by applying Ext-a't(-, Z/2) to the KR, complex. Our diagram (3.2) is a 
splitting of that complex. In fact, let g' denote the composition 

g augment 

Ai A,-1 N -* Ai ?A, _Z/2 - Z/2. 

Then 

g' E HomZA (A1i OA,1 Na, Z/2) = ExtOt(A, 1 Na, Z/2), 

where t = 21+1(21+1 - 1). So g' arises in the E1-term of the KSS: g' E E1 2 ,t. To 

see that the class given by g', (g'), is a cycle in the KSS, note that (e ? (t+1?1 ) is in 
the image of the map 

ExtA,(M.+l,Z/2) -> ExtA, (Ai ?A,1 N, Z/2) (diagram 2.6). 

Thus (g') is a cycle by standard homological algebra arguments. Further, (g') is 
never a boundary since drX = (g') implies that x lies in a subquotient of 
Extr-l;t(Nar, Z/2), which is zero for r < 2+ 1 by the ledge theorem. Thus, (g') 
projects to a nontrivial class wi E ExtA, t(Z/2, Z/2). This class is a nonzero divisor 
in ExtA (Z/2, Z/2) because it is obtained from a full splitting of complexes. More 
precisely, the Yoneda product wia / 0 whenever a = 0 in ExtA (Z/2, Z/2). 

We identify this class wi in the setting of 7r*(BP) = Z(2)[ v1, v2, ...]. Consider the 
Baas-Sullivan spectrum BP(i) [3], where 7T*(BP(i)) = Z(2)[vl, v2,..., vi]. The mod2 
cohomology is given by H*BPKi) = A ?E(Q0,Q1 Q )Z/2, where Qj denotes the 
Milnor generator, and the clASS connecting the cohomology and the homotopy 
collapses: 

E**= Ext**(H*BP(i),Z/2) = Ext*(A ?E(Q0,Q, Q) Z/2, Z/2) 

EtE(*Q0 Ql . Q,) (Z/2, Z/2) 

by change of rings 
- Z/2[h0, vl, v2,. ..,vi] * T(BP(i)) = Z(2)[Vl, V2, *V,iV,] 

since ho corresponds to multiplication by 2. We can think of H*BP(i) as the 
extended A-module A ?A Ai ?E(Q0 Q, Q,) Z/2 since E(Q0, Q1, . , Q,) is a subal- 

gebra of Ai. Thus, 

ExtA(H*BP(i),Z/2) = ExtA,(Ai ?E(QO Q1 Q,)Z/2,Z/2). 

Note that Ai ?&E(QO,Q, Q ) Z/2 Ai-1, the double of Ai-,, as an Ai-module and 
as an algebra. By this we mean that Ai ?E(QO Q,, , ) Z/2 is isomorphic to the 

image of Ai-, under the doubling homomorphism in A [16]. Thus we have the 
clASS for BP(i): 
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Hence, there is a class at s = 21?1, t = 2"'+(21?1 - 1) in ExtA,(9Aj_l,Z/2) repre- 

senting vV1l E ?T*(BP(i)). The augmentation 9Aj_j Z/2 induces a map 

Ext**(Z/2, Z/2) -* Ext**(9A11, Z/2). Then J*w =(v2 ). This follows since 

the May spectral sequence for ExtA (Z/2, Z/2) shows that wi is the only nontrivial 
class present in the bigrading s, t = 21+1, 21+1(21+1 - 1). Also (v2+1) is the unique 
class in ExtA,(3Ail, Z/2) at that bigrading. Both have the same May SS repre- 
sentative: bo', + . Since both classes are nontrivial, we have established that j*(w) = 

(v2' '). This completes the proof of Theorem A. 
We now use the classes v2'1 E ExtA,(Z/2, Z/2) to produce periodicity operators 

in the cohomology of the Steenrod algebra. J. F. Adams was the first to note the 
existence of periodic phenomena in the E2-term of the clASS [1]. In that paper, he 
constructed an element corresponding to v4 in ExtA,(Z/2, Z/2). Further, he showed 
that v2k E ExtA(Z/2, Z/2) for k > 2. Using this, a periodicity operator is defined: 

Exts t(Z/2, Z/2) Exts+2k t+3-2 k(Z/2 Z/2) 

(3.3) k k. 
v2k 

Ext s(Z/2, Z/2) Ext 2kt+32k(Z/2, Z/2) 

PkX is defined whenever q,*(x) # 0, with Pkx being the coset pulled back from 
v2 . qk (x). This can be expressed as a Massey product: P1x = Kh3, h4, x), iterated 
to give pk for k > 1. This operator is an isomorphism in Extst(Z/2, Z/2) in a 
neighborhood of the line of slope 2. An element x E Ext(Z/2, Z/2) is periodic 
under the Adams operator if PkX # 0 for k > 1. 

Our goal is now to define the notion of v -periodicity in ExtA(Z/2, Z/2) using the 
elements v7211 E Ext A (Z/2, Z/2) constructed in the proof of Theorem A. To begin, 
we need a result along the lines of Adams' proof that v2 lives in ExtAj, ExtA2'... 
up to ExtAk' k > 2. 

THEOREM B. For k any positive integer, there exists a sequence of positive integers 
N1, N2,..., Nk such that 

Z/2Fho, v4N1), v8N2) ,vi2 
'N, , v(2k+) C ExtA (Z/2, Z/2). 

Note that Ni also depends on the value of k. Also note that Nk can be chosen to 
be 1 by Theorem A. 

PROOF. The following result is proved in [12] by Lin. Another proof was presented 
later by Wilkerson in [18]. 

THEOREM (3.4). If B is a Hopf subalgebra of a finite, graded, connected, cocommu- 
tative Hopf algebra A, then the restriction map 

i*: ExtA(Z/2, Z/2) - ExttB(Z/2, Z/2)/nilpotents 

is nonzero in infinitely many positive degrees. 
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Wilkerson's proof uses the natural action of the Steenrod algebra in the Lyndon- 
Hochschild-Serre spectral sequence, together with the observation that the cohomol- 
ogy of a finite, connected, cocommutative Hopf algebra is Noetherian. To apply this 
theorem to our case, we note that there are exterior subalgebras of Ai, E(Q0), 
E(Q1), E(Q0, Q1),..., E(Q0, Q1,.. ., Qi). Apply Lin's theorem with A = Ak and 
B = E(Qi). Now ExtE(QO,Q,,...,Q )(Z/2, Z/2) = Z/2[h0, v1, ..., vJ1. Define the class 
vNE Ext Ak(Z/2, Z/2) to be the coset of elements that map to the class v0 E 

ExtE(QOQl,... QJ)(Z/2, Z/2) Z/2[h0, v1,..., vi]. This must be nontrivial for some 
sufficiently large N, completing the proof of Theorem B. 

REMARKs. (1) One should note that h0 lives in all ExtAk(Z/2, Z/2)'s. 
(2) While v2`' is an element in ExtA (Z/2, Z/2), v 27'N is a coset in 

ExtA (Z/2, Z/2) for k > i. 
(3) The natural projections 

Pk-1: EXtAk(Z/2, Z/2) -> ExtAk _(Z/2, Z/2) 
satisfy 

PklvN) C VN E- Exts _(Z/2, Z/2). 

This follows since the restriction maps and projections are induced from: 

E (QI,Q2, Qi-1) E E(QI,Q2, ,QJ) 

Ai_1 Al 

(4) Given k > i, the smallest power of v72` that could be present in 
ExtAk(Z/2, Z/2) is 2k - l. If any smaller power were present, then it would be in 
the image of ExtA(Z/2,Z/2) by the Adams approximation theorem [1]. This is 
impossible, since all powers of vi must support an ho-tower, contradicting the 
Adams edge theorem [1]. 

We can summarize these results in the following tower. 

ExtA (Z/2, Z/2) = lim ExtA k (Z/2, Z/2) 

k 

Pk 

(v 21 +1 Mk c Ext A (Z/2, Z/2) 

Pk-1 

(v 2+1 )Mk1 c Ext k(Z/2, Z/2) 

Pk-2 

pi 

V.+1 E ExtA (Z/2,Z/2) 

In(3.5), Mk > Mkl and limMk o= 
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We know, then, that for k > i, there is a polynomial algebra on v21'"Nl present in 
Ext Ak(Z/2, Z/2). It is reasonable to ask what is the lowest power of v72'+ that can 
live in Ext Ak(Z/2, Z/2). There is substantial evidence that the answer is this. 

CONJECTURE (3.6). V,2 is present in ExtAk(Z/2, Z/2) if and only if i < i < 2i 
+ m. 

To define the notion of vi-periodicity and vi-torsion in ExtA(Z/2, Z/2), we will 
localize each ExtAk(Z/2, Z/2) with respect to vi for each k > i. Since these localiza- 
tions commute with the natural projections (Remark (3)) they must commute with 
the inverse limit. To be clear about what we mean by localization with respect to the 
coset VN, let N be such that VN is the smallest power of v,2 present in 
Ext k(Z/2, Z/2). Let (a1, a2, ..., am) be the full coset VN. It is finite since 
Exts,t(Z/2, Z/2) is finite for any s, t. We can then form the element a = a1a2 ... am, 
which will be a uniquely determined element in the coset (VN) m. Then 

ExtAk(Z/2, Z/2)((vi)-1) is defined as the direct limit of the sequence 

ExtAk -> Nm(2?2)ExtAk -, 22Nm(2 )EXtAk * . . 

With this in mind, we use ExtAk(Z/2,Z/2)((vi)-1) to denote localization with 
respect to this uniquely determined power of v72'+ in ExtAk(Z/2, Z/2). Since 

Pk-1(vIN) C v 
N 

" " ExtAk (Z/2,Z/2), these localizations fit together into the 

following tower: 

'tPk 'tPk 

fk 

ExtAk(Z/2, Z/2) . ExtAk(Z/2, Z/2)( vy') 
k i~~~~~nvert v,k 

Pk-1 Pk-1 

(k-71 

(3.7) Ext (Z/2, Z/2)ExtAk(Z/2, Z/2)(vT' 
( )LAk_L( / / /) invert v/ 

Pk-2 Pk-2 

tP, tP 

ExtA(Z/2, Z/2) ExtA (Z/2, Z/2)( vi) 
ExtA, invert v, 

A 

Since the tower commutes, we can form the inverse limit: let 

VSt = lim [Exts't(Z/2,Z/2)(vi1)]. 

k 

Then we have a map fi given by 

Exts,'t(Z/2, Z/2) 
Vs t 

|| def 

lim , 

lim Exts,(Z/2, Z/2) lim [Ext i(Z/2, Z/2)(vi1)]. 

k k 
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DEFINITION (3.8). An element x E ExtA(Z/2, Z/2) is v,-periodic if fi(x) =A 0 and 
vi-torsion otherwise. 

Equivalently, x E ExtA(Z/2, Z/2) is vi-periodic if there exists an integer M > 0 
such that q,*(x)(vUv)S # 0 for all s > 0, all k > M. Here qk: ExtA(Z/2,Z/2) 
ExtAk(Z/2, Z/2) denotes the natural projection and vN" E "ExtAk(Z/2, Z/2) is the 
smallest nonzero power of v%2' present there. x E ExtA(Z/2, Z/2) is va-torsion if 
there exists some M > 0 such that for all k > M there is an s > 0 with q/*(x)(vf')s 
- 0 in ExtAk (Z/2, Z/2). 

4. Operations on ExtAk(Z/2, Z/2). In this section, we construct certain families of 
operations 

r1: ExtAk (Z/2, Z/2) -> ExtAk E(jY k?Z/2, Z/2) 

for k > 1 which are used to prove Theorem C. These operations are constructed 
using the first stage of the resolution constructed in [11], and are related to the 
Quillen operations in BP*. We show how these operations act on the periodicity 
elements vN Ee ExtAk(Z/2, Z/2) constructed earlier. 

The operations are induced by a map given by Theorem 5 of [11], 

kk: @ zm2k1 4//A --* A//Ak 
m>O 

defined by 2k(im) = x 1Sqm2, where im denotes the generator of the mth sum- 
mand. The dual of this map is easily described. Recalling that 

(A//An)* _Z/2[l+S I 22 1 2 n "+D gn+2~ Dn+3~ ...*] 

there is an isomorphism 

@ z (A//Ak-l)* _- Z/2[t2 12 D2k Dk D kl . 
m>0 

where t is a placeholder with ItI = 1 and t Sq = 0. 

LEMMA (4.1). The dual of 4'k is given by 

k: Z/2 [ t 2 
S k+1]Z/2 [ t 2t g 

Here (Pk is defined on the generators by 

(41 )k J + 2fi1t2+'' where n = ( ifj > k + 2+ . 

Extending 4k over all of (A//Ak)* by multiplicativity completes the definition. 

PROOF. The definition of ?k and an exercise in duality show that ?k can be 
'p 

computed as follows: let A//AZ A* ? A//AZ denote the coaction of the dual of 
the Steenrod algebra on A//A*. Then for R any sequence of nonnegative integers, 
there exist integers em and squences Rm, It and J, such that 

-p(;R) = E?6 m2 k+7 ? ;Rm + E# ?g XJr 

m t 
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where e,t 0 or 1 and il = 0 in I. Then (Pk)*(tR) = me Rmm2k+l This gives 
precisely the definition of 'kk 

Note that the map Ok also respects the right A-module structure involved since 

(Gk) Sq = Dk + Dk -1 Thus, (Pk induces a map in ExtA(Z/2, -): 

Ext A (Z/2, (A//Ak)) Ext A(Z/2, E m 2( A//Ak _)*) 
m 0 

Change Change 
(4.2) -L of -, of 

rings rings 

ExtAk(Z/2, Z/2) r nEO t Z/2 Z/2) 

Here all four objects are rings, with the ring structures on the top row inherited from 
those on (A//Ak)* and eD m>Om2k (A//Ak-)*. The bottom row has ring 
structures given by Yoneda product. Now kk* iS a ring homomorphism since ckk iS, 
and the change of rings isomorphism respects these structures, so that the map r is 
also a ring homomorphism. 

We break r into its components r = em > orm where 

rm: ExtAk(Z/2, Z/2) -* EXtAk (m2k m Z/2, Z/2). 

Then the ring structure of r is a Cartan formula: 
m 

(4.3) rm(xy)= f r(X)rm-j(Y) 
j=O 

Notice also 

(4.4) rO(x) = Pk-1(X) 

where Pk-,: ExtA (Z/2, Z/2) -* ExtAk I(Z/2,Z/2) is induced from the inclusion. 
Finally, if x E ExtA(Z/2, Z/2) and x' = qk(x) E ExtAk(Z/2, Z/2), then rm(x') = 

Pk-1(X') if m = 0, zero otherwise. This follows since the map 4k is a map of 
A-modules, so that the map induced in ExtA(-, Z/2) must respect Yoneda products 
with classes from ExtA(Z/2, Z/2). 

We now consider the action of these operations on the periodicity classes 
v o. c ExtA (Z/2, Z/2). To do this, we consider ExtA(A//Efl Z/2) 
Ext E(Z/2, Z/2), where En denotes the exterior algebra E(Qo0, . , Q n) C A n. Recall 
that Ext En(Z/2, Z/2) = Z/2[vo, v1,..., va], and that there is a natural restriction 

map in: ExtAn - Ext E. Let Kn denote the kernel of jn. Then the operations 
constructed above act on these periodicity classes in the following manner. 

THEOREM (4.5). For the classes v" E ExtA (Z/2, Z/2) defined above, 

(v l/Kn if k = 0, 

rk(v ) = K if k = 2mn?j-n- 

t ZerolKn otherwise. 
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PROOF. There is a version of the ring homomorphism r above defined for the 
Hopf algebra A//En given by the formula of Lemma 4.1 for the dual (A//En)*. 
This induces in Ext: 

r: ExtE(Z/2, Z/2) --* EXtE (Em2n1Z/2, Z/2) 
m>O 

just as in (4.2). Now the bar construction for calculating Ext 
En 

begins: 

d, 

AIIEn* -4 AIIEn OA* 

d, 

A* A XA* 

Here dI(Gn) = 1=l[gn1-ji which corresponds to v, E Ext n(Z/2, Z/2), where the 
i = 0 term vanishes. So 

dl ( )= d + gnt2n) since d1 is natural w.r.t. the map r induced in A//En* 

= d1(Dn) + d1(n-n1)t2 , 

which corresponds to vn + vnIt2 . So in Ext E' we have r(vn)= vn + vn-1t2. 

Extending this to v,2, and looking at the corresponding map in ExtA completes the 
proof. 

5. Proof of the main theorem. In this section, we prove Theorem C and derive 
Corollary D from it. The proof is to some extent a simplified version of Johnson and 
Yosimura's proof that in a BP*BP-comodule M, elements that are vn-torsion are also 
vk-torsion, for 0 < k < n [9]. Our operations 

rj: ExtA (Z/2, Z/2) -> ExtAk (ij2? lZ/2, Z/2) 

replace the Quillen operations of BP-theory. 
We recall the statement of our main theorem. 

THEOREM C. If x E Extsjt(Z/2, Z/2) is vn-periodic, then x is also v +?k-periodic for 
allk > 0. 

Equivalently, if x E Extsit(Z/2, Z/2) is vn-torsion, then x is also vk-torsion for all 
k such that 0 < k < n. 

PROOF OF THEOREM C. Let x E ExtA(Z/2, Z/2) be vn-torsion. Then for all k 
sufficiently large, qk(X) = X is vn-torsion in ExtAk(Z/2, Z/2). Since x E 

ExtA(Z/2, Z/2), r0(') = r0(qk(x)) = Pk-1(x) = qk_1(x), and rm(x) = 0 for m > 0, 
by the remarks following (4.4). Recall that vs is a coset. As before, let Kk denote the 
kernel of the restriction map ExtAk -* Ext E, (so that Kk is bigraded). Let -ns be a 
fixed represenatative for the coset, vs. Then any element in the coset can be 
represented as ins + y, for y E Kn. Then x being vn-torsion implies that 

[ 7(tins + y)] x = 0, for some t. 
yeK 
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For all m E N, then 

rm[[H(VfE K y)]ly rm (V + Y)t - qk-1(X) = 0 
[[yE eKK]J\ = yK/ 

For the appropriate value of m (given in 4.5), this becomes 

H &s-I + z) t qk.1(X) = 0, 

where the classes z are in Kk-1 and rm(&Uns) is a particular element -ns-I mapping to 
the appropriate class in ExtEk- 1' This implies that [Hl WE Kk l(vns-I + w)t' ] qk_1(x) 
= 0. This shows that qk - l(x) is v,_ 1-torsion, completing the proof. 

From this, we prove. 

COROLLARY D. There is a chromatic filtration 

ExtA(Z/2, Z/2) = F I D FO D F1 D D Fi D 

such that Fi - Fi-1 is the set of classes that are vi,1-periodic but vk-torsion for all 
k < i. 

PROOF- Recall that VisJt = lim [Exts,t(Z/2, Z/2)(v-1)], and that the map fi: 
Exts,t(Z/2, Z/2) Vis,t defines the v -torsion and periodic classes in 
Extsjt(Z/2, Z/2). Define Fi to be the kernel of the map fi for all i > 0. Fi contains 
FiJ+1 by Theorem C. Defining F 1 to be all of ExtA(Z/2, Z/2) completes the proof. 
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