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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 309, Number 1, September 1988 

ODD PRIMARY PERIODIC PHENOMENA 
IN THE CLASSICAL ADAMS SPECTRAL SEQUENCE 

PAUL SHICK 

ABSTRACT. We study certain periodic phenomena in the cohomology of the 
mod p Steenrod algebra which are related to the polynomial generators v, E 
ir.BP. A chromatic resolution of the E2 term of the classical Adams spectral 
sequence is constructed. 

One of the major goals of homotopy theory is the understanding of 1r (S), the 
stable homotopy groups of spheres. A technique for studying these groups is by the 
construction of certain "systematic families" of classes, first due to M. G. Barratt 
[3]. One way to express this idea is as follows. Let X be a finite complex. (All 
"spaces" and "complexes" are objects in the stable category localized at a prime 
p.) A self-map of degree i, v: ix- X, is nonnilpotent if the k-fold composition 
vk = (VOVO * * OV): 3kiX X is essential for all k > 0. 

DEFINITION (1). For a given nonnilpotent map v, a class a E 7rj(SO) is v- 
periodic if a can be decomposed as St ' ) X/,X(t-1) aySt-i, where X(k) denotes 
the k-skeleton of X, and the composite kiX v kX P / -) a St-i is essential 
for all k > 0 [4]. 

A v-periodic class a e xr*(SO) determines an infinite "systematic family" in the 
following manner. For each k > 0 there exists an integer E with 0 < e < dim X, 
such that the composite 

Ski+e, _+ ki[XIX(e-1)] Vk yX/X(t1 )st 

is essential (since the composite above is essential for all k), so that each k > 0 
determines a class (or classes) in lr(ki+e_t+i)(So). Here are several well-known 
examples of this sort of phenomenon. 

EXAMPLE (2). Let Mp denote the mod p Moore space (p > 3). Then Adams 
[1] has constructed a nonnilpotent map A: EYMp - Mp, where q = 2(p- 1). This 
map determines a family of nontrivial classes {at}, t > 1. with at E lrqt- (SO) 
given by the following diagram: 

EqtM At Mp 

1'1 
Sqt at S1 
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78 PAUL SHICK 

EXAMPLE (3). Let V(1) denote the cofiber of the map A above. Then for 
p > 5, there is a nonnilpotent map B: E2(P2_I)V(1) - V(1) which determines a 
family of nontrivial classes {ot}, t > 1, with /t E lr[2(p2_1)t-q-I] (SO), by including 
S2(p2_-)t into the bottom cell Of D2(P _)tV(l) and pinching out onto the top cell 
of V(1) [17]. 

EXAMPLE (4). Let V(2) denote the cofiber of B. Then for p > 7 there is a map 
C: 2(P3 -1)V(2) -? V(2) which determines a family of nontrivial classes {f-t} in 
7r* (SO) in a similar manner [13]. 

Nonnilpotent self-maps of finite complexes have been classified by Devinatz, 
Hopkins and J. Smith [6] as part of the affirmative solution of the Nilpotence 
Conjecture. Part of this result can be stated as follows. 

THEOREM (5). (Nilpotence theorem) Let X be a finite complex. A self-map 
v: E'X - X is nonnilpotent if and only if the induced homomorphism BP*v is 
nonnilpotent in BP*(X). 

Here BP is the mod p Brown-Peterson spectrum, where 

7r* (BP) = Z(p) [vl,[v2, X *. 

with lvil = 2(pi - 1). The three examples above all represent multiplication by a 
generator in BP-homology. Here BP*A is the map *vI in BP*Mp, BP*B = V2, 
and BP*C = *V3. Two other interesting maps representing vi's have been studied 
at the prime 2. These are v4: 38M2 ) M2 and v8 _48Y y, where Y is a 
certain four cell complex. Adams and Barratt have used the first map and Davis 
and Mahowald have used the second map to produce families in Kr* (SO) at the prime 
2 in [1 and 4]. 

Since these systematic families in xr*SO are associated with vn-self-maps, one 
obvious way to investigate this sort of thing is by way of the Adams-Novikov spec- 
tral sequence. Here the E2 term is ExtBP. BP (BP*, BP*), with the spectral se- 
quence converging to xr*X, completed at p. For the sake of convenience, we denote 
ExtBP,BP(BP*, M) by Ext(M), for a BP*BP-comodule M. Let In denote the 
prime ideal (p,Av, v2,... , vn_) in BP*. Then the connecting homomorphisms in 
Ext associated to the short exact sequences 

0-+ BP*/In_I BP*/In- I BP*/In? 

yield 
Exto(BP*/In) ) Ext'(BP*/In_I) 6 Extn (BP*). 

Clearly there is a class vt E Ext0(BP*/In). Denote the class (66... 6)(vt) E 
Extn (BP*) by gr(n), where gr(n) is meant to represent the "nth Greek letter". It 
is shown in [13] that for n = 1, 2 and 3, these classes in Ext survive the Adams- 
Novikov spectral sequence to represent the classes at, 1t and at, respectively. The 
following conjecture generalizes these results. 

CONJECTURE (6). For p a sufficiently large prime, depending on n, gr(n) is a 
nontrivial class in Extn(BP*) which survives the Adams-Novikov spectral sequence 
to represent a nontrivial homotopy class in xr*S0. 



THE CLASSICAL ADAMS SPECTRAL SEQUENCE 79 

The process of investigating Ext (BP.) by means of the n-fold connecting homo- 
morphism shown above can be set up formally as the Chromatic spectral sequence 
of [13], which filters the Adams-Novikov spectral sequence E2 term into vn-periodic 
subquotients, known as the "chromatic filtration". This can be geometrically real- 
ized by spectra [15]. 

A natural question to ask is: how does this machinery of vn-self-maps of finite 
complexes and their associated systematic families in xr.S0 appear in the classi- 
cal Adams spectral sequence? At the prime 2, this question was answered in [9] 
and [16]. There, a fair amount of technical machinery was necessary to start the 
analysis. For odd primes, the question may be answered in a much simpler fashion. 

Recall that the classical Adams spectral sequence (abbreviated by "clASS") at 
a prime p has E2 -Ext"t(Z/p, Z/p) =* xt_(SO), where A denotes the mod p 
Steenrod algebra and' denotes completion at p. Let An denote the Hopf subalgebra 
generated by { l, ... , Pn 1 if p is odd, {Sql,... , Sq2n} if p = 2. Then A = 
lim nAn, so that 

EXtA (Z/p Z/p)-lim n ExtAn (Z/P1 Z/P)* 

We can use information about the cohomology of the finite Hopf algebra An, then, 
to infer results about the clASS E2 term. 

Consider E(n) = E(Qo, Q1, . . . , Qn), the Fp exterior algebra on the first n + 1 
Milnor generators. Then E(n) is a Hopf subalgebra of An, where we denote the 
inclusion-by i: E(n) - An. Recall also that for n > 0 there is a spectrum BP(n), 
known as the Baas-Sullivan spectrum [2] (or as the Johnson-Wilson spectrum in 
[14]), such that 7r.(BP(n)) Z(p)[vl,v2,... ,vn], where Ivn4 = 2pn -2. Its coho- 
mology is given by H* (BP(n)) A ?E(n) Z/p, (where, as in the sequel, all coho- 
mology groups are assumed to have Z/p coefficients, unless otherwise specified). 
Then the clASS converging to r* (BP(n)) has 

E2 (BP(n)) = ExtA(H* (BP(n)), Z/p) 
= ExtA(A ?E(n) Z/p, Z/p) 

EXtE(n) (Z/p, Z/p) by change of rings 

-Z/P[qo X VI, * * Vn],1 

converging to 7r* (BP(n)) Z(p) [vl, v2,... , vn], where the class "vi = {Qi } in 
Ext E(n)-(Z/p, Z/p) represents the homotopy class vi and multiplication by qo 
corresponds to multiplication by p in 7r*BP(n). Here the E2 term is concentrated 
in even dimensions, so that the clASS collapses from that stage. The inclusion map 
i: E(n) C-+ An given above induces the restriction map in cohomology 

i*: ExtAn(Z/p, Z/P) -- ExtE(n) (Z/p Z/P) = Z/p[qo, v,... Vn] 

DEFINITION (7). A class x E ExtAn (Z/p, Z/p) is said to represent vk if the 
restriction i* (x) is vk E EXtE(n) (Z/p, Z/p) 

With these conventions, we can state our first main result. 
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THEOREM A. For all n > 1, p an odd prime, there exist classes Ut, U2,... , Un 
in ExtAn (Z/p, Z/p) such that 

(i) Z/p[qo, Ui, U2,.** ,Un] C ExtAn (Z/P, Z/P), 
(ii) i* (un) = vP E ExtE(n) (Z/P, Z/P), 

(iii) C (us) = Vii E ExtE(n) (Z/p, Z/p) for 1 < i < n, 
(iv) Un is a non-zero-divisor in EXtAn (Z/P, Z/P) 

Thus ui E EXtAn (Z/p, Z/p) represents vPn . We hereafter abuse notation and 
write Z/p[qo, v I v2 7... ,vP] C ExtAn (Z/p, Z/p). At the prime 2, the best that 
one can show is that Z/2[ho, v , I42. . .,Vn ] c ExtAn (Z/2, Z/2), where Ni is 
some (possibly very large) integer [9]. The proof in the mod 2 case requires the use 
of Koszul-type resolutions [5, 9], together with a theorem of Lin and Wilkerson, 
rather than the simpler machinery used below. It should be noted that there are 
possibly many classes in ExtAn (Z/p, Z/p) representing vip , one of which we will 
explicitly produce in the proof of the theorem. For notational ease, we will let 
wi c EXtAn (Z/p, Z/p) denote the coset of classes which represent vni . An easy 
inspection of the May spectral sequence converging to EXtAn (Z/p, Z/p) shows that 
there is only one class in the same bigrading as the class un of the theorem, so that 
VP is uniquely represented. 

PROOF. Let A* denote the dual of the Hopf algebra An. Then there is an 
extension of Hopf algebras: 

Fp -- Pn -- A*n- En -- F, 

where Pn is the truncated polynomial algebra Z/P[61, 62,. - xIn]/((_j) and En 
denotes the Fp exterior algebra E(ro,,rl... , in). Here I i = 2p - 2 and ri I = 
2p- 1. Associated to this short exact sequence, we have a Cartan-Eilenberg 
spectral sequence (CESS) converging to ExtAn (Z/p, Z/p), with E2 term given by 

ExtPn (Z/p, EXtEn (Z/PI Z/P)) 

[14]. To analyze this spectral sequence, we first note that EXtEn (Z/p, Z/p) is a poly- 
nomial algebra on n + 1 generators, which we denote by Z/p[ao, al, . . . , an], where 
ai has bigrading (1, 2pt -1). The spectral sequence collapses from E2 for odd primes 
[12], as one can see by filtering the dual of the Steenrod algebra by the number of r's 
in a term. This filtration leads to an E2 term filtration in terms of the a?'s, which is 
preserved by the differentials in the CESS, for p > 2, sO that there can be no nontriv- 
ial differentials. Hence the E2 term gives a filtered version of ExtAn (Z' /p, Z/p). The 
Pn-coaction on H*En = Z/p[ao, a,, ... , an] is given by -q3(ak) = E(P' C) ai. Thus, 

i+1 
the Pn-coaction on the class a" is V/(al)= -E i 9aP =1?9ap, E Pn?9H*En. 
Since a" is primitive in H*En, it yields a nontrivial cohomology class in 

E2= Extpn(Z/p,H* En) 

Further, the map 
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is the inclusion of a direct summand as a map of of Pn-comodules, since +)(x) can 
have a term containing aP if and only if aP divides x. If we let un denote the class 
in Extpn (Z/p, H*En) = EoEXtAn (Z/p, Z/p) given by the map (.aP), then Un is a 
nontrivial class in bidegree (p, 2pn+1 - 1). Further, the map (.aP) induces 

(.aP): Extpn (Z/p, H*En) -- Extpn (Z/p, H*En) 

which is also the inclusion of a direct summand. Thus the class un E ExtAn (Z/p, Z/p) 
representing (.aP) is a non-zero-divisor. 

To produce the classes ui for i < n of the theorem, one notes that i/'(aP ) = 
1 0 ani , so that (ap ) is a primitive in H*En. Let ui denote the class in 

EoEXtAn (Z/p, Z/p) representing (.a ). The u 's are not necessarily non-zero- 
divisors, however, since the map 

( n-i+l): Z/p[ao,a1, ,an] o Z/p[ao,all ,an] 

is not the inclusion of a direct summand of Pn-comodules (a class x E H*En might 
have aP as a factor of +'(x) even if x is not divisible by aP ). 

That i*(ui) = Vp follows from the fact that the edge homomorphism of 
the CESS of an extension is the restriction map. Equivalently, the result is clear 
from the following commutative diagram of Hopf algebras and the naturality of the 
CESS: 

Fp Pn ) A* En Fp 

Fp E(n)* E(n)* Fp 

This completes the proof of the theorem. 

We now use these classes representing vk in EXtAn (Z/p, Z/p) to define what it 
means for elements in EXtA(Z/p, Z/p) to be vi-periodic or vi-torsion. 

DEFINITION (8). Let S C ExtAn (Z/p, Z/p) be the multiplicative set consisting 
of the elements which represent vpk for some k. Define EXtA (ZIp,Z/p)(v 1) to 
be the ring S-1EXtAn (Z/P, Z/P). 

Note that this definition is independent of the power of vpn chosen. Let 

Pn: EXtAn+1 (Z/p, Z/p) -- ExtAn (Z/p, Z/p) 
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denote the restriction map in cohomology. Then these localizations fit together into 
the following tower: 

EXtA(Z/p, Z/p) 

EXtA.+l (Z/p, Z/P) - EXtA.+1 (Z/p, Z/P) (V1) 

(9) 
EXtA,, (Z/P, Z/P) ) EXt A,, (Z /P ZIP) (V?f 

EXtAi (Z/P, Z/P) - EXtAS (Z/p, ZIp) (v 1). 

Taking the inverse limit, we obtain a map 

(10) fi: ExtA(Z/p, Z/P) - lim {EXtAn (Z/P, ZIp) (V7)} 
n 

This allows us to make the following definition. 

DEFINITION (1 1). A class a E EXtA (Z/p, Z/p) is vi-periodic if fi(a) $ 0 and 
is vi-torsion if fi(a) = 0. 

This definition is equivalent to the following. Let 

qn: EXtA(Z/p,Z/p) - ExtAn(Z/P,Z/P) 

denote the restriction map. A class a E ExtA(Z/p, Z/p) is vi-periodic if and only 
,(Vp-i+,1 if for each n such that a = qn(a) $ 0, we have a(vP )S $ 0 in EXtAn (Z/p, Z/p) 

for all s > 0, where we use the informal notation for any representative for a power 
of vi. A class a E ExtA(Z/p, Z/p) is vi-torsion if and only if for each n such that 
a = qn(a) $0 , there is some s > 0 such that a(v )S = 0 in ExtAn (Z/P, Z/P) 
Note that for some N sufficiently large, a = qn(a) $ 0 in EXtAn (Z/p, Z/p), for all 
n > N. 

THEOREM B. If a class a E EXtA (Z/p, Z/p) is vn -periodic, then a is also Vn+k - 
periodic for all k > 0. Equivalently, if a is vn-torsion, then a is also vi-torsion for 
all i < n. 

This result is known in the setting of BP*BP-comodules by a result of Johnson 
and Yosimura [7]. At the prime 2, this appears as Theorem C in [9]. The proof for 
odd primes is similar to that for the prime 2. 

PROOF. The proof uses a map of algebras which is essentially the total reduced 
power operation. Let t be an indeterminate of degree 2(p - 1), and let 

Pt Pn 

n>O 
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be the total reduced power operation. Let 

r: A* A*[t] 

denote the action of Pt on the left. Then r is a map of right A-algebras given by 

(12) r(-rn+i) = Tn+l + Tntpn if n > -1, 

r(1n+l) n+l + (ntp if n > O. 
Recall that (A//An)* is isomorphic to 

Z/P[f1Pl X n2P I * P * n n+ij ...* ] C) E(rn+l X rn+2 i ... 

both as algebras and as right A-modules. Similarly, 

(A//E(n)) * = Z/P[6l X 62 X .. I * ] E(rn+l X Tn+2 ** 

The following lemma follows easily from (12). 

LEMMA 13. There are inclusions 

r(A//An+l)* c (A//An)*[t]I 

r(E//E(n + 1))* C (E//E(n))* [t]. 
By Lemma 13, we have maps (after suitable change of rings) 

r ExtAn+ 1 (Z/p, Z/p) ExtAn (Z/P, Z/p) [t] I 

r*: ExtE(n+l) (Z/p, Z/p) ExtE(n) (Z/p Z/P)[t], 
which are ring homomorphisms, since r is given by a map of algebras. The image 
of EXtAn+1 (Z/p, Z/p) is contained in the ideal generated by tp . Note that if a class 
a E EXtA(Z/p, Z/p) has nontrivial restriction a E EXtAn+1 (Z/p, Z/p) and 
EXtAn (Z/P, Z/p), then r(a) = a. (Here, as in the rest of the paper, we use a to 
denote any nontrivial restrictions of a E ExtA (Z/p, Z/p) in EXtAm (Z/p, Z/p), for 
all m > 0.) 

LEMMA 14. The induced map 

r*: ExtE(n+ 1) (Z/p, Zip) -- EXtE(fn) (Z/p, Z/p) [t] 

has the values 

r* (vi+ 1) = vi+ 1 + vitP E ExtE(n) (Z/p, Z/p) [t] 
whenever 1 < i < n. 

PROOF. We compute in the bar construction. Let ir: A* -- E(n)* be the natural 
restriction and E denote the augmentation. Then the change of rings isomorphism 

ExtA (Z/p, (A//E(n))*) - ExtE(n) (Z/p, Z/p) 
is given in terms of the bar construction by 

wherd'e] c (a')|[ral] E E(n), 

where 
j[1 E ../(n) ...A 
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Recall that H*E(n) -Z/p[qo, v,... , Vn,] where vi = {Qi}, corresponding to 0r; 
in the bar resolution for E(n)*. Consider the element E[C kr3jl] = 0[ri]. It is 

a cycle since 02 = 0 and further, Ze(CP_j)[irrjI = a[ri-], since 6(.j'1j) = 0 unless 

j = i. So it follows that Z[Xtj r3] is a representative for vi. The element r* (vi+1) 
is therefore represented by 

Z[r(t+4j1_j)Irj] = Z((i_jt 3) IrjI = Ijl1j]t" 

which represents vitPi. 

COROLLARY 15. If x E ExtAn+, (ZIp,Z/p) representsIp then 

r* (x) = X + ytP E EXtAn (Z/P Z/p) [t] , 

where y represents vpk 

PROOF. This follows from naturality (Lemma 13 and Lemma 14). 
PROOF OF THEOREM B. Let a E ExtA(Z/p, Z/p) be vi+-torsion. It suffices to 

show that a is vi-torsion. Let n be sufficiently large so that the restriction qn (a) # 0 
in EXtAn (Z/p, Z/p). Let a denote both qn+l (a) and qn(a), as above. Since a is 
vi+ -torsion, there is some integer s such that xa = 0 in ExtAn+1 (Z/p, Z/p), where 
x represents vi+1' Then 

O = r* (xa) = (x + ytP )r* (a) = xa + yatP8+i = 0 + yatP9+i 

where y represents vP by the above corollary. Thus a is vi-torsion in ExtAn (Z/p, Z/p), 
implying our result. 

It should be remarked that the total reduced power operation r can be factored 
through the Davis-Mahowald splitting, which decomposes A (AAn Z/p[x, X-1] as a 
sum of A ?An-I Z/P's [8]. 

As an easy consequence of Theorem B, we have the following corollary. 

COROLLARY C. There is a filtration, which we call the chromatic filtration, 

ExtA(Z/p, Z/p) = F_ D F D F1 D D Fn D Fn+l D... 

such that Fn/Fn+l is the subquotient of classes that are vk-torsion for all k < n 
and vj-periodic for all j > n + 1. 

PROOF. Let Fn = ker (fn), where the map fn is given in Definition (11). The 
result follows immediately from Theorem B. 
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One should think of this chromatic filtration in the following manner: 

EXtA(Z/p,Z/p) - (qo-periodic quotient) 

U 

(qo-torsion subgroup) - (vl-periodic subquotient) 

U 

(vl-torsion subgroup) - (v2-periodic subquotient) 

U 

(v2-torsion subgroup) - (v3-periodic subquotient) 

U 

U 

(vs-torsion subgroup) - (v,+t-periodic subquotient) 

U 

PROPOSITION ( 1 6) . The chromatic filtration of EXtA (Z/p, Z/p) is complete. 

PROOF (MAHOWALD) . Recall that vP is a non-zero-divisor in EXtAn (Z/p, Z/p). 
For each class a E EXtA(Z/p, Z/p), there is some integer n such that a = qn(a) $4 0 
in EXtAn (Z/p, Z/p). So for each such n, the class a is vn-periodic. Hence 

n (vn-torsion subgroup) = 0, 
n>O 

completing the proof. 
Haynes Miller has constructed a chromatic spectral sequence converging to 

EXtA(Z/p, Z/p) using the collapsing of the CESS for p odd [11]. This allows one 
to define vn-periodicity in EXtA (Z/p, Z/p) in another manner. It is not hard to 
show that if a class a E EXtA (Z/p, Z/p) is vn-torsion in Miller's definition, then 
it is also vn-torsion in the sense given above. The converse seems to be quite 
difficult to prove, because of the intractability of the chromatic SS differentials. It 
is conjectured that the two definitions of vn-periodicity in EXtA(Z/p, Z/p) agree. 

The chromatic filtration given above is intimately tied in with the idea of "root 
invariants" in stable homotopy. See [10 or 16] for a partial explanation of this 
relationship. 
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