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ISOMETRIES HOMOTOPIC TO THE IDENTITY 

DOUGLAS A. NORRIS 

(Communicated by David G. Ebin) 

ABSTRACT. The types of surfaces which admit nontrivial isometries homotopic 
to the identity are classified up to diffeomorphism. In dimension three this is 
done for complete manifolds of constant negative curvature. Three-dimensional 
visibility manifolds that admit nontrivial isometries homotopic to the identity 
are shown to be diffeomorphic to a product L x RI . 

1. INTRODUCTION 

A theorem of Eberlein [4] states that if a surface, that is, a two-dimensional 
connected Riemannian manifold, is complete, has nonpositive Gaussian cur- 
vature, and is not homeomorphic to a plane, cylinder, Moebius band, torus or 
Klein bottle, then its isometry group is discrete. It is an effort, in dimension two, 
to remove the condition of compactness from a classical theorem of Bochner 
[3]. Bochner proved that a compact n-dimensional manifold with negative Ricci 
tensor has a discrete and therefore finite isometry group. A stronger conclusion 
to Eberlein's theorem would be that any isometry of the surface homotopic to 
the identity must be the identity. This is precisely the way in which Frankel 
[6] modified Bochner's theorem, although he needed to make the additional 
assumption that the manifold must have nonpositive sectional curvature. 

The purpose of this paper is to improve Eberlein's theorem for surfaces in 
a similar way and then to obtain analogous results in dimension three. It will 
be shown that without curvature or completeness restrictions, up to diffeomor- 
phism, there are seven types of surfaces which admit nontrivial isometries ho- 
motopic to the identity. Three-dimensional visibility manifolds which admit 
nontrivial isometries homotopic to the identity will be shown to be diffeomor- 
phic to a product L x R1 where L is a tubmanifold. The additional condition 
of constant negative curvature will allow such a three-dimensional manifold to 
be classified, up to diffeomorphism, as one of five types. 

2. CONVEX FUNCTIONS AND VISIBILITY MANIFOLDS 

The results of this paper depend on the following properties of convex func- 
tions and visibility manifolds (refer to [1, pp. 77-85], [2], and [5]). 
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A continuous function g: M -- R' on a complete Riemannian manifold M 
is convex if for every geodesic segment y: I -* M from any m to any n and 
for every t E I, we have g(y(t)) < (1 - t)g(m) + tg(n). A subset N of M 
is called convex, if for m, n E N there is (up to parametrization) a unique 
shortest geodesic from m to n in M and this geodesic is contained in N. 

A Hadamard manifold is a complete, connected, simply connected Rieman- 
nian manifold of dimension n > 2 having nonpositive sectional curvature. 
Such manifolds are diffeomorphic to Rn. The complete manifolds M of di- 
mension n > 2 having nonpositive sectional curvature are precisely the quotient 
manifolds M/F where the Riemannian covering M is a Hadamard manifold 
and r is a freely acting properly discontinuous group of isometries of M . The 
covering manifold M can be compactified by the addition of points at infinity. 
Let M(oo) denote the set of points of infinity of M where a point of infinity 
is an asymptote class of unit speed geodesics of M. A natural topology can 
be defined on M U M(oo) such that M(oo) is homeomorphic to Sn-'. If a 

is an isometry of M then this map can be extended to a homeomorphism of 
M U M(oo) which will also be denoted by a. The set of accumulation points 
of an orbit I(q) = {y(q): y E r} in M(oo) is independent of the choice of 
q E M(oo) and is called the limit set L(rT) of I. 

The isometries of a Hadamard manifold M can be classified using the dis- 
placement function. If a is an isometry on M, the convex function da(x) = 

d(x , &(x)), where d( ) denotes the distance on M is called the displace- 
ment function of a. An isometry a is called elliptic, hyperbolic or parabolic if 
da has, respectively, zero minimum, positive minimum or no minimum in M. 

Let a be an isometry homotopic to the identity of the complete Riemannian 
manifold of nonpositive sectional curvature M = M/I. Let the homotopy be 
denoted by h,: M M where ho is the identity transformation of M and 
h = a, and define h: M -M to be the unique lift of h, to M such that ho 
is the identity mapping [8, pp. 57-58]. Then a = hi commutes with every deck 
transformation. Define fa to be the function on M where fG(m) is the length 
of the unique geodesic segment from m to a(m) in the homotopy class of the 
curve t -- h,(m) . Given any point in E p l(m) where p is the covering map, 
the geodesic segment lifts to a geodesic segment in M starting at in and its 
length is da(m) . Since a commutes with every deck transformation, it follows 
that da(mn) = fG(m) for every mn E p (m). Therefore, fa is convex and 
the level sets of da project to level sets of fa via p. The isometry a will be 
called elliptic, hyperbolic or parabolic if fa has, respectively, zero minimum, 
positive minimum, or no minimum in M. This causes the isometry a to be 
given the same classification name as a. If fa assumes a minimum on M 
then let CG denote the minimum set. This minimum set C. is the projection 
of the minimum set of da on M which is analogously denoted C.. Both C. 
and C. are closed convex sets. 
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A manifold M = M/F where M is a Hadamard manifold is called a visibil- 
ity manifold if any two points in M(oo) can be joined by a geodesic. The class 
of visibility manifolds includes all complete manifolds of curvature K < c < 0. 
An isometry a on M can be characterized by the number of points F(a) that 
its lift a fixes in M(oo). Since M is a visibility manifold F(a) is either 
0,1,2 or oo. 

(i) If a is elliptic, then C. is a complete, closed, connected, totally 
geodesic submanifold without boundary, and if a is nontrivial then 
dim C. < dim M. The isometry a fixes either 0 points in M(oo) 
when CG is an isolated fixed point, 2 points or an infinite number of 
points. 

(ii) If a is hyperbolic, then a fixes exactly 2 points in M(oo). 
(iii) If a is parabolic, then a fixes exactly 1 point in M(oo) and a leaves 

the horospheres at that point invariant. 
A visibility manifold M = M/F can be classified as parabolic, axial, or fuch- 
sian. If L(F) contains exactly one point then M is called parabolic and if 
L(F) contains exactly two points then M is called axial. A visibility manifold 
that is neither parabolic nor axial is said to be fuchsian. 

3. CLASSIFICATION OF EXCEPTIONAL MANIFOLDS 

Exceptional manifolds are those which admit nontrivial isometries homo- 
topic to the identity. The primary strategy is to show that the restrictions placed 
upon the manifold cause it to be either parabolic or axial. 

Proposition. Let M be a visibility manifold. If M admits a nontrivial isometry 
a homotopic to the identity such that F(a) is finite then M is diffeomorphic to 
a product L x R1 unless M is a Moebius band. 
Proof. (Refer to [2], [5] and [7].) If the manifold M is simply connected then 
the group of deck transformations F of M = M/F is trivial and M is dif- 
feomorphic to Rn and therefore to Rn I x R1 . Assume that F is nontrivial. 
The limit set L(F) must be nonempty since F is an infinite group that acts 
freely and properly discontinuously on M. If x E L(F), then choose a se- 
quence {yn} of isometries of F such that y,(q) -- x as n - oo for any point 
q E M. Since a commutes with each element of F, &(x) = limnloo &yn(q) = 

limn-oo ynd(q) = x. Thus a fixes each point of L(F) and the cardinality of 
L(r) is at most F(a) < 2. Therefore, L(r) contains either one or two points. 

If L(r) contains one point x, then M is a parabolic manifold and the C2 

Busemann function at x induces a C2 convex function f on M which has 
no minimum. The manifold M is therefore diffeomorphic to a product L x R 
where L is a level surface of f, the projection of a horosphere in M at x. 

If L(F) contains two points, then M/F is an axial manifold. An axial 
manifold is a smooth vector bundle over a circle and is therefore diffeomorphic 
to either S1 x Rn-I or B x Rn2 where B is the Moebius band. 
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Corollary. Let M be a complete n- dim manifold ofconstant negative curvature 
such that n > 3. If M admits a nontrivial isometry a homotopic to the identity 
such that F(a) is finite then M is diffeomorphic to L x R1 where L is an 
(n - 1)- dim submanifold that admits a complete flat metric. 
Proof. It follows from the proof of the proposition that if M is not simply 
connected then it is either parabolic or axial. If M is simply connected then 
it is diffeomorphic to Rn I x R1, and R' 1 admits a flat metric. A parabolic 
manifold is diffeomorphic to L x R 1 where L is the projection of a horosphere. 
In this case, L is flat since M has constant curvature and horospheres are flat 
in the induced metric. An axial manifold is diffeomorphic to either S1 x R 
or B x n-2, and S x R -2 and B x R n3 both admit a flat metric. 

Theorem 1. If a surface M is not diffeomorphic to a plane, cylinder, Moebius 
band, torus, Klein bottle, sphere or projective plane, then the only isometry of M 
homotopic to the identity is the identity. 
Proof. Let q be a nontrivial isometry of a surface M which is homotopic to 
the identity. The surface M is conformally equivalent to a complete surface of 
constant Gauss curvature [9 and 10]. Therefore M is conformally equivalent 
to a space form; either S 2/r, R2/r, or H 2/r where H2 is the hyperbolic 
plane. Up to isometry S2/17 can only be either a sphere or a projective plane 

2 while R /IF can only be the plane, a cylinder, a torus, a M6ebius band or a 
Klein bottle. These are all exceptional cases in the statement of the theorem. 
So we can assume there exists a conformal diffeomorphism p: M -- H 2/1. The 
mapping a = pqp 1 and the lift a are nontrivial conformal diffeomorphisms 
homotopic to the identity on H 2/1 and H 2, respectively. The conformal 
diffeomorphisms of H2 are known to be precisely the isometries of H2 and it 
follows that a and therefore a are isometries. 

If a is nonelliptic then the proposition applies and H 2/1 is diffeomorphic 
to either the Moebius band or to L x R1 which in the latter case can only be 
the plane or the cylinder. If a is an elliptic isometry, then the lift a is also 
a nontrivial elliptic isometry and dim C. < dimH2 = 2. Thus dim C < 1, 
which implies that F(a) is at most 2, and the proposition again applies. 

Theorem 2. Let M be a three-dimensional visibility manifold. If M is not 
diffeomorphic to a product L x R1 then the only isometry of M homotopic to 
the identity is the identity. 
Proof. If a is a nonelliptic isometry which is nontrivial then the result follows 
from the proposition. Let a be a nontrivial elliptic isometry homotopic to the 
identity. Assume that dim C. = 2. Since a is homotopic to the identity, and 
since the manifold is three dimensional, the induced mapping v* of the tangent 
bundle must fix the tangent space at each point of the fixed point set C.. This 
would imply that a is the identity mapping. Therefore, if the isometry a is 
elliptic thent dim C. = dim C. < l and the theorem is a consequence of the 
proposition. 
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In the following corollary the symbol T represents the torus, B the Moebius 
band, and K the Klein bottle. 

Corollary. Let M be a complete connected three-dimensional Riemannian man- 
ifold of constant negative curvature. If M is not diffeomorphic to R3, S1 x R2 
T x RI, B x R', or K x R1 then the only isometry of M homotopic to the 
identity is the identity. 
Proof. If a is a nontrivial isometry homotopic to the identity then Theorem 2 
and the corollary to the proposition imply that M is a product L x R' where 
L is a two-dimensional manifold that admits a complete flat metric. Up to 
isometry, the complete, flat, two-dimensional manifolds are the plane, cylinder, 
torus, Moebius band, and Klein bottle. 

The exceptional types of manifolds in Theorem I and in the above corollary 
are true exceptions. That is, there exist manifolds of each exceptional type 
which admit nontrivial isometries homotopic to the identity. 
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