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DISCRETE GROUPS 
AND THE COMPLEX CONTACT GEOMETRY OF S l (2 , C) 

BRENDAN FOREMA 

ABSTRACT. We investigate th vertical foliation of the standard complex con­
tact structure on r \ Sl (2, C), where r is a di cr te ubgroup. We find that, if 
r i nonelementary, the vertical leave on r \ Sl (2, C) are holomorphic but not 
regu lar. However, if r is I<Ieinian , th n r \ Sl (2, C) contain an op n, dense 
et on which th vertical Ieav are regular, complete and biholomorphic to 

c· . lf r is a uniform lattice, the foliation is nowhere regular, although ther 
are both infi ni tely many compact and infinitely many nonclo ed leaves. 

1. l NT ROD CTIO 

A compl x contact t ru tur on a (2n + ! )-dimensional complex manifold (M, J ) 
is a maximally nonintegrable n -dimensional holomorphic ubbund le 1-i of maximal 
rank; i. e ., 1-i i a global holomorphic ubbundle of the holomorphic tangent bundle 
defined as the kernel of local holomorphic 1-form ry such that ry 1\ (dry )n is nowhere 
zero. T hese spa s were first inv stigated in [ ]. T hey include the twister spaces 
of quaternionic Kahler manifolds with nonzero curvature, most notably CC P 2n+l, 

the complex Heisenberg group , th projectivized cotangent bundl of an a rbi t rary 
complex manifold , and S l (2 , C) . 

Let 1-{ R be the real subbundle of T RM induced from 1-i in T 1•0 M. Then it is 
pos ible to construct a par t icular } -invariant ubbundle of T RM, V uch that 
TR M = 1-{ EB V . V is called the vertical sub bundle of 1-i and acts somewhat analo­
gou ly as t h Reeb vector field does for a real contact manifold. If t h re is a global 
holomorphic 1-form ry t hat define 1-i , t hen 1-i is called a strict complex contact 
tructure, and there i a well-defined holomorphic vector field ~ t ransverse to 1-i 

given by the equations ry (O = 1 and ~(~) dry = 0. ~ is called the complex R eeb vector 
fie ld or the vertical vector fi eld. The vert ical subbundle in this case i t he span of 
the real and imaginary parts of~ and hence induce a holomorphic line bundle in 
T 1•0 M . In part icular , V is a foliation. 

A great deal is still yet unknown about the vert ical sub bundle of general complex 
contact structur s, par t icularly with regard to integrability and r gulari ty i ues. 
Examples of complex contact manifolds wit h vertical subbundles satisfying a ll of 
the possible degrees of integrability and regulari ty have yet to be found . This 
paper fills in some of the gaps in knowledge by investigating the vert ical foliations 
of the complex contact manifolds of the form r \ Sl (2, C) , where r is a discrete 
subgroup. The main objective is to come to understand how the leaves of the 
vert ical foli ation are embedded in r \ Sl (2, q A nice con equence of this work is 
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a cl arer understanding of the manifolds of the form r \ Sl(2, q. In particular 
w find that the vertical I aves on r \ Sl(2. C) are holomorphic but not regula~ 
for any nonelementary discrete subgroup r c Sl(2, C). How ver, if r is Kleinian 
then there is an open dense subset of r \ l(2, q for which the vertical leave ar~ 
regular and complete. On Llw other hand, if r is a uniform lattice, the foliation 
is nowhere regular . although there are both infinit ly many compact and infinitely 
many nonclo ed leaves. 

In order to accomplish thi work, we will ake advantage of the rich geom tric 
structure of Sl(2, C). parti ularly its role as th simply connect d over of the pace 
of Mobius transformations on the extended complex plane, M , which act as both 
the pace of i~ometries of hyperbolic three-space, Hyp3, and th space of conformal 
mappings of C. For this reason. all of the work will be done within the context of M 
rather than Sl(2, C). The pertinent aspects of this latter structure are reviewed in 
Section 2. In the third ·ection. we explore the possible configurations of the vertical 
leaves in terms of regularity and cl sur . Finally, in th last ection, we compare 
these configurations with tho e of other known complex contact manifolds. 

For more information on complex contact geometry, ee [3]. For more details 
regarding hyperbolic geometry and its isometries, se [ l] and [12]. Finally, for the 
tru ture of Kleinian ubgroup . s e [10] and [7]. 

2. THE GEOMETRY OF M 

The pace M has a very wide and very deep geometric structure. For purpo e 
of brevity and coherence, only th pP.rtinent asp ct of M are di cus ed in thi 
ection. Specific references are given throughout for those readers who would like 

to learn more details and extensions of the results listed here. 

2.1. M as a space of isometries. Let C = C U { } be the extended complex 
plane, which will often be identified with CP1 by 

z ~ [ ; ] for z E C and ~ [ ~ ] . 

Let M be the space of Mobius transformations on C. Then the homomorphism on 
Sl(2, q defined by 

p : ( ~ ~ ) ~ ( z ~ ~; : :) 

stabli hes Sl(2,C) as the simply connected cover of M. Sine p-1(id) ={±I} c 
Sl(2 ,C), M ~ Sl(2,C)/{±I}, and so elements of M will often be denoted as 

elements of Sl(2 , C) in brackets, e.g., [ ~ ~ ] corre ponding to the transformation 

g(z) = .. ~ 1 . It i well known that by a certain extension of domain , M is the space of 
orientation-preserving isometrie of Hyp3 , using the upper-half- pace model. These 
transformation can be clas ified (up to conjugacy) into four categories . An element 
of M , g(z) = ~~!f, i called 

(1) parabolic if g has exactly one fixed point on C, 
(2) elliptic if g has a fixed point in Hyp3, 
(3) loxodromic if g is neither parabolic nor elliptic, 
( 4) hyperbolic if g is loxodromic and preserve an open di c in C. 
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Thi is the ·tandard m thod of categorizing lobiu tran formations, and it extend 
to higher dimensions (see Section IV.C of [10]) . For further detail· regarding thi 
categorization on th extended plane, ·e Chapter IV of [1]. 

For z E C, let z be the space of all parabolic transform,ations in M fixing z plus 
the identity transformation. For dis tin t points z1 , z2 E C, let F .. , ,z2 be th space 
of all transf rmations fixing z1 and z2. Let nz and fz,.z2 denote th c rresponding 
Lie algebras. 

For z1 , z2 E C, let th mapping Z1z2 : C- { z2} --+ C be given by ZJ z2 (z) = z1 for 

all z E C - { Z2} · t 

called th ·et of qua iconstant transformation on C. Thi tis naturally identifi d 
with txt which gives it a topology Furthermore, we say that a equence {g1 } C 

M converges to z1z2 if {gj} convcrg s to the constant mapping z1 uniformly on 

compact subsets of C- {z2 }. These topologies combined with the topology of M 
induced from Sl(2, q give a topology on M U QC. The proof of the following 
propo ition is given in S ction 3.6 of [7]. 

Proposition 2.1. The space M U QC i compact. 

Alternative approaches to the topology of M , in particular, its equentiall imi ts, 
can be found in S ction B of hapter IV of [10] a well a ections 4. 7 and 4.9 of 

[7]. 

2.2. Properties of discrete groups of M. Let r C M be a discrete subgToup. 
r i called a lattice if r \ M has finite volum , and is called a uniform lattice if 
r \ M is compact . Since the i otropy group of the action of M on a given point in 
Hyp3 is compact, it is not difficult to s e that r is a lattice if and only if r \ Hyp3 

has finite volume; and it is a uniform lattice if and only if r \ H yp3 i · compact. 
Let on = on (r) be the set of all z E C at which r act properly di ontinuou ly, 

i.e., all z E t about whi h there is an open n ighborhood U such that 

-y(U) n U = 0 for all 'Y E r - {id}. 

r is call d Kleinian if on is nonempty. 
Let A = A.(r) be the set of all z E t such that there i a sequence { 'Yi} C r 

and a v E Hyp3 such that limj-r 'Yj(v) = z in the topology of th one-point 
compactification of the Euclid an upp r half-space {(a,b,c) E R3 : c :::=: 0}. Set 
n = t - A. r i , called elementary if A has cardinality at most two. 

The following theorem consist of ·everal well-known facts. Details and proof 
of all of the e tatements except Stat ment (5) can be found in Sections , D and 
E of Chapter II of [10]. The statement and proof of Statement (5) can be found in 
Section 6 of hapter 3 in [7] . 

Theorem 2.2 . Let r c M be a discrete ubgroup with A., on and n as defined 

above. 

(1) Ifr i nonelementary. then the cardinality of A is infinite. 

(2) A is closed in t and is the et of accumzLlation point of the set r ( t) in 

t. 
(3) Both on and n are open in C. FUrthermore. if r i Kleinian. then on is 

dense in C. 
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a cl arer understanding of the manifolds of the form r \ Sl(2, q. In particular 
w find that the vertical I aves on r \ Sl(2. C) are holomorphic but not regula~ 
for any nonelementary discrete subgroup r c Sl(2, C). How ver, if r is Kleinian 
then there is an open dense subset of r \ l(2, q for which the vertical leave ar~ 
regular and complete. On Llw other hand, if r is a uniform lattice, the foliation 
is nowhere regular . although there are both infinit ly many compact and infinitely 
many nonclo ed leaves. 

In order to accomplish thi work, we will ake advantage of the rich geom tric 
structure of Sl(2, C). parti ularly its role as th simply connect d over of the pace 
of Mobius transformations on the extended complex plane, M , which act as both 
the pace of i~ometries of hyperbolic three-space, Hyp3, and th space of conformal 
mappings of C. For this reason. all of the work will be done within the context of M 
rather than Sl(2, C). The pertinent aspects of this latter structure are reviewed in 
Section 2. In the third ·ection. we explore the possible configurations of the vertical 
leaves in terms of regularity and cl sur . Finally, in th last ection, we compare 
these configurations with tho e of other known complex contact manifolds. 

For more information on complex contact geometry, ee [3]. For more details 
regarding hyperbolic geometry and its isometries, se [ l] and [12]. Finally, for the 
tru ture of Kleinian ubgroup . s e [10] and [7]. 

2. THE GEOMETRY OF M 

The pace M has a very wide and very deep geometric structure. For purpo e 
of brevity and coherence, only th pP.rtinent asp ct of M are di cus ed in thi 
ection. Specific references are given throughout for those readers who would like 

to learn more details and extensions of the results listed here. 

2.1. M as a space of isometries. Let C = C U { } be the extended complex 
plane, which will often be identified with CP1 by 

z ~ [ ; ] for z E C and ~ [ ~ ] . 

Let M be the space of Mobius transformations on C. Then the homomorphism on 
Sl(2, q defined by 

p : ( ~ ~ ) ~ ( z ~ ~; : :) 

stabli hes Sl(2,C) as the simply connected cover of M. Sine p-1(id) ={±I} c 
Sl(2 ,C), M ~ Sl(2,C)/{±I}, and so elements of M will often be denoted as 

elements of Sl(2 , C) in brackets, e.g., [ ~ ~ ] corre ponding to the transformation 

g(z) = .. ~ 1 . It i well known that by a certain extension of domain , M is the space of 
orientation-preserving isometrie of Hyp3 , using the upper-half- pace model. These 
transformation can be clas ified (up to conjugacy) into four categories . An element 
of M , g(z) = ~~!f, i called 

(1) parabolic if g has exactly one fixed point on C, 
(2) elliptic if g has a fixed point in Hyp3, 
(3) loxodromic if g is neither parabolic nor elliptic, 
( 4) hyperbolic if g is loxodromic and preserve an open di c in C. 

DI CRETE GRO PS A D CO IPLEX '0 TACT GEOMETRY OF SI(2,C) 4193 

Thi is the ·tandard m thod of categorizing lobiu tran formations, and it extend 
to higher dimensions (see Section IV.C of [10]) . For further detail· regarding thi 
categorization on th extended plane, ·e Chapter IV of [1]. 

For z E C, let z be the space of all parabolic transform,ations in M fixing z plus 
the identity transformation. For dis tin t points z1 , z2 E C, let F .. , ,z2 be th space 
of all transf rmations fixing z1 and z2. Let nz and fz,.z2 denote th c rresponding 
Lie algebras. 

For z1 , z2 E C, let th mapping Z1z2 : C- { z2} --+ C be given by ZJ z2 (z) = z1 for 

all z E C - { Z2} · t 

called th ·et of qua iconstant transformation on C. Thi tis naturally identifi d 
with txt which gives it a topology Furthermore, we say that a equence {g1 } C 

M converges to z1z2 if {gj} convcrg s to the constant mapping z1 uniformly on 

compact subsets of C- {z2 }. These topologies combined with the topology of M 
induced from Sl(2, q give a topology on M U QC. The proof of the following 
propo ition is given in S ction 3.6 of [7]. 

Proposition 2.1. The space M U QC i compact. 

Alternative approaches to the topology of M , in particular, its equentiall imi ts, 
can be found in S ction B of hapter IV of [10] a well a ections 4. 7 and 4.9 of 

[7]. 

2.2. Properties of discrete groups of M. Let r C M be a discrete subgToup. 
r i called a lattice if r \ M has finite volum , and is called a uniform lattice if 
r \ M is compact . Since the i otropy group of the action of M on a given point in 
Hyp3 is compact, it is not difficult to s e that r is a lattice if and only if r \ Hyp3 

has finite volume; and it is a uniform lattice if and only if r \ H yp3 i · compact. 
Let on = on (r) be the set of all z E C at which r act properly di ontinuou ly, 

i.e., all z E t about whi h there is an open n ighborhood U such that 

-y(U) n U = 0 for all 'Y E r - {id}. 

r is call d Kleinian if on is nonempty. 
Let A = A.(r) be the set of all z E t such that there i a sequence { 'Yi} C r 

and a v E Hyp3 such that limj-r 'Yj(v) = z in the topology of th one-point 
compactification of the Euclid an upp r half-space {(a,b,c) E R3 : c :::=: 0}. Set 
n = t - A. r i , called elementary if A has cardinality at most two. 

The following theorem consist of ·everal well-known facts. Details and proof 
of all of the e tatements except Stat ment (5) can be found in Sections , D and 
E of Chapter II of [10]. The statement and proof of Statement (5) can be found in 
Section 6 of hapter 3 in [7] . 

Theorem 2.2 . Let r c M be a discrete ubgroup with A., on and n as defined 

above. 

(1) Ifr i nonelementary. then the cardinality of A is infinite. 

(2) A is closed in t and is the et of accumzLlation point of the set r ( t) in 

t. 
(3) Both on and n are open in C. FUrthermore. if r i Kleinian. then on is 

dense in C. 



4194 BRE DA FOREMA 

( 4) n is the set of all z E C about which there is an open neighborhood u 
such that -y(U) n U = 0 for all but finitely many -y E r. In particular, if 
zE n - on , then there is an elliptic elem ent off fixing z . 

(5) If r is nonelementary, then, for any two distinct Zl, Z2 E A, there exist 
a sequence of loxodromic elements off, {'YJ}, with fixed points pJ and qj 
such that 
(a) PJ -1- z1 and q1 -1- z2 for each j E N, 
(b) limJ--+ pJ = z 1 , and 
(c) limJ --+ qj = z2. 

(6) If 'Yl E f is loxodromic and 'Y2 E f , then either 'Y2 has the same fixed points 
as 'Y1 or 'Yl and 'Y2 have no fixed points in common. 

2.3. The left-invariant complex contact structures of M. If 1{ i a left­
invariant complex contact structure of M , i.e. , preserved by left multiplication of 
elements in M, then it will correspond to a two-dimensional subspace of the Lie 
algebra of M , sf(2, C), which is not pre erved by the Lie bracket. In [6], it is hown 
that all such subspaces are conj ugate to each other and of the form n + n c

0
r 

,., Z1 z 2 11 

two distinct z1, z2 E C so that the corresponding complex Reeb vector field pan 
the subalgebra f z, ,z2 (recall from Subsection 2.1 that thi is the Lie algebra of the 
subgroup of M fixing z1 and z2) . We call 1-i = n0 + n the standard complex 
contact structure on 81(2, C). If we et {E1 , E 2 , E 3 } to be the left- invariant basi 
of sf(2, q given by 

E1 = ( ~ ~1 ) , E2 = ( ~ ~ ) , E3 = ( ~ ~ ) 

with dual basis {Ei, E2 , Ej}, then 1-i = ker(Ei) . Set 17 = Ei so that the complex 
Reeb vector field~ of 17 is given by~ = E 1 and (~)c = fo . . Let V be the holomorphic 
foliation of T

1
•
0 M induced by the vector field~- The leaves of this foliation are called 

the vertical leaves. 

LetS be the complex surface given by S = CP 1 x CP 1 - 6 , where 6 = { ([(], [(]) : 
( E C*}. Define the mapping 1r : M --+ S by 

By identifying C with CP1
, 1r can al o be defined by 1r(g) = (g( ), g(O)) for all 

gEM. 
1r is surjective and holomorphic and , for A E 81(2, q, 

7r ( L[AJ ( ~ ~ ) ) = ([A ( ~ ) ] , [A ( ~ ) ]) . 
Hence, for any discrete group r c M, left equivalence modulo r on S is well­
defined, and 1r induces a well-defined mapping from r \ M to r \ S, also denoted 
by 7r. 

Furthermore, for [A], [B] E M , 1r([A]) = 1r([B]) if and only if there is an element 

[C] E Fa , , i.e. , [C] = [ ~ (~ 1 ] for some ( E C*, uch that [B] = [A][C] . 

Therefore, Sand M / Fo ,oo are biholomorphic, and each 1r- 1 (p) for p E Sis a 
vertical leaf, which is denoted by .Cp. 

Recall that a foliation F of a manifold M i called regular at a point x E M if 
there is an open neighborhood of x, U, such that, for any leaf .C ofF, the inter ection 
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£ n U is a connect d open sub et of .C , and that the foliation it elf is called regular 
if each point of M is a regular point of F. If the foliation is regular , then the space 
of leave is a well-defined manifold ( ee [9]) . Thi combined with the above work 
yields the following proposition . 

Proposition 2.3. Let 1-i be the standard left-invariant complex contact subbundle 
on M given as the kernel of the left-invariant form 17 = E 1 *. Let~ be the R eeb vector 
field of 17 with corre ponding foliation V C T 1•0 M. Then V is a regular foliation of 
M , each leaf of which is biholomorphic to c•. Furthermore, the space of vertzcal 
leaves of V i biholomorphic to the complex surface S via the C* -fibre bundle map 

1r: M --+ S. 

3. MAl RES LTS 

For th is ection, r i a nonelementary di crete subgroup of M. Let A, on , and 
D be its limi t et, s t of proper discontinuity, and set of discontinuity, respectively. 
Denote the proj ction M--+ r \ M by r [*] or[*] . 

Let A= {p = (zl,z2) E s: Zl, Z2 E A} , n =s-A and n' = (0 n X on) n s. In 
particular , n' c n. However , it i important to note t_!"lat n X A is also a subset of 
n. Neverthele s, if r is Kleinian , then on is dense inC o that n' i den e in S. 

The first ub ection addresses the issue of the regularity of Vat points on certain 
vertical leave of r \ M. The econd ub ection de cribe when a given vertical leaf 
i closed or compact in r \ M and also contains the culminating result regarding 
Kleinian groups and uniform lattices . 

3.1. Regularity of the vertical foliation in r \ M . 

Proposition 3.1. Let f c M be a nonelementary disc_rete subgroup. For p E S, 
r acts properly discontinuously at p if and only if p E n and p is not fixed by an 
elliptic element of r. 
Proof. Let p = (z1, z2) E S uch that p E 0 and p is not fixed by elliptic elements 
in r . Then exactly one of the following two cases must occur: 

(1) one of the points, Z 1 Or Z2, i an element of on, 
(2) one of the point is an element of n -on, the other i an element of (n -

on) u A, and no elliptic element of r fixes both points. 

If either Z 1 Or Z2, say Z1, is an element of on , then there is an Open neighborhood 
U of z1 , not containing z2 , such that -y(U)nU = 0 for all nontrivial elements -y E r. 
By choosing any open neighborhood V of z2 not intersecting U, we have an open 
neighborhood of p, U x V, such that -y (U x V) n (U x V) = 0 for all nontrivial 
1 E f. Thus, facts properly discontinuously at p. 

ow, uppo e that Zl E n - on , Z2 E (n - on) u A, and no elliptic element of 
r fixes both points. By definition of n, there is a neighborhood u of Zl such that, 
for all but finitely many -y E r , -y(U) n U = 0. Let f' = b1, ... , 1d be the set of all 
nontrivial -y E r uch that -y(U) n U -f. 0. The elements off' are necessarily elliptic 
and fix z1 . By the assumption that no elliptic element fixes both z1 and z2, no 
elements off' fix z2 . Thus, there is a neighborhood of z2, V, such that -y(V) n V = 0 
for all nontrivial 'Y E r, which mean that 'Y (U X V) n (U XV) = 0 for all nontrivial 
1 E f. 

Conversely, there are two possibilities to consider: either p is fixed by an elliptic 
element off or p E f.... If p i fixed by an elliptic element off, then clearly f does 
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0 M induced by the vector field~- The leaves of this foliation are called 

the vertical leaves. 
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gEM. 
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£ n U is a connect d open sub et of .C , and that the foliation it elf is called regular 
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M , each leaf of which is biholomorphic to c•. Furthermore, the space of vertzcal 
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3. MAl RES LTS 
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on) u A, and no elliptic element of r fixes both points. 

If either Z 1 Or Z2, say Z1, is an element of on , then there is an Open neighborhood 
U of z1 , not containing z2 , such that -y(U)nU = 0 for all nontrivial elements -y E r. 
By choosing any open neighborhood V of z2 not intersecting U, we have an open 
neighborhood of p, U x V, such that -y (U x V) n (U x V) = 0 for all nontrivial 
1 E f. Thus, facts properly discontinuously at p. 

ow, uppo e that Zl E n - on , Z2 E (n - on) u A, and no elliptic element of 
r fixes both points. By definition of n, there is a neighborhood u of Zl such that, 
for all but finitely many -y E r , -y(U) n U = 0. Let f' = b1, ... , 1d be the set of all 
nontrivial -y E r uch that -y(U) n U -f. 0. The elements off' are necessarily elliptic 
and fix z1 . By the assumption that no elliptic element fixes both z1 and z2, no 
elements off' fix z2 . Thus, there is a neighborhood of z2, V, such that -y(V) n V = 0 
for all nontrivial 'Y E r, which mean that 'Y (U X V) n (U XV) = 0 for all nontrivial 
1 E f. 

Conversely, there are two possibilities to consider: either p is fixed by an elliptic 
element off or p E f.... If p i fixed by an elliptic element off, then clearly f does 
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not act properly discontinuously at p. If p E f.... then. ·ince f is nonelem ntarv. 
there i a sequence {'y1 } C r with fixed points {p1 , q1 } such that · 

(1) limj--+ Pj = z1 , 

(2) 1im1 --+ Qj = z2, 

(3) for each j E N, the cardinality of the set {p1 ,. o •• p1 } is j, and 
( 4) for each j E N, the cardinality of the set { q1 , ... , Qj} is j. 

Let U C S be any op n set containing p. Then there are infinitely many j E N such 

that (Pj, q1 ) E U, which impli that, for tho e same values of j. /j ( [J) n [J ¥- 0. 
This prove the proposition. 

Proposition 3o2 o Let r C M be a nonelementary di crete ubgroup of M. Let 
[g] E r \ M lying in the vertical leaf r [.Cp]· Then th v rtical foliation is regular at 
[g] if and only if r acts properly discontinuously at p. 

Proof. First , suppos that r acts properly discontinuously at p. Then there is an 
open neighborhood U of p uch that 1(U) n U = (i) for all nontrivial 1 E r. Let 
U = 1r- 1(U) c M and U' = t' [U] C f \ M. ote that, du to the properly discon­
tinuous condition at p, any two distinct vertical leaves passing through U (actually, 
they'll be completely contained in U) are also di tinct modulo left multiplication by 
r. Furthermore, also due to the condition at p, th projection from U to U' is a dif­
feomorphism. Therefor , the open neighborhood U' of [g] i a regular neighborhood 
of the vertical foliation. 

Second, suppose that r does not act properly discontinuou ly at p. Let g be a rep­
resentative in M of [g] such that p = 1r(g), and let U' and U b open neighborhood 
of [g] and g, respectively, su h that the projection U -t U' is a diffeomorphism. 
Finally, set U = 1r(U) C S, an open neighborhood of p. Since r does not act prop-
rly discontinuou ly at p, th re i a nontrivial 1 E r such that r(U) n [J ::j:. (i). In 

particular, there ar at least two distinct verti a! leav in M passing through U 
that are equivalent modulo left multiplication by r. Th images of these leaves in 
U' are thus two distinct connected components of th same vertical leaf in r \ M. 
Therefore, th vertical foliation is not regular at [g]. 

Careful examination of the above proof reveals that Proposition 3.2 is true in a 
much broader setting, namely, the following propo ·ition . 

Proposition 3o3o Let G be a Lie group, H c G a Lie Sttbgroup, and r c G 
a discrete subgr·oup . Let V be the vertical foliation induced from the pr-ojection 
1r : G -t G I H, which al o induce a foliation V on r \ G. Let [g] E r \ G be 
repre en ted by g E G. and let p = 1r (g). Then r [VJ i regular at [g J if and only if r 
acts properly discontinuously at p. 

Combining Propo ition 3.1 and 3.2 yields th following corollary. 

Corollary 3 o4o Let r c M be a nonelementary discrete ubgroup of M. L t 
[g] E r \ M. Then the vertical foliation is regular at [g] if and only if [g J i an 

element of a vertical leaf r [.Cpj uch that p E {t and p is not fixed by an elliptic 
element of r. 

3.2. Closure of the vertica l leaves in r \ M o Before proc eding, we r turn 
to the general ituation of the fiberings of Lie group: to which Proposition 3.3 
i appli d. The following propo ition and corollary, the proofs of which are very 
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straightforward, are generalizations of the concept of ubgroups with good r -heredity 

(see pp. 20-25 of [11]) . 

Proposition 3o5o Let G be a Lie group, H c G a Lie subgroup and r c G a 
di crete subgroup. Let 1r : G -t G I H be the canonical projection and denote by 
r [*] the projection from G to r \ G. For p E G I H I the following tatements are 

equivalent. 
(1) r [1r- 1 (p)] i closed in r \ G. 
(2) r1r- 1(p) i a closed ub et of G. 
(3) The mappingjp: fp \7r- 1 (p) -t clos (r [1r- 1 (p)]) given byjp (rp[g]) = r [g], 

where r p i the stabilizer of p in r, i a homeomorphi m. 

Corollary 3o6o If the space rP \ 1r-1 (p) is compact, then r [1r- 1 (p)] i clo ed in 

r \G. 
We now relate these results to the case at hand , namely, G = M, H = Fo , , 

and r is a discrete subgroup of M. Note that , for p E S, the v rtical leaf .Cp is 
given by 1r-1 (p) = {g E M : g( , 0) = p} ·o that the stabilizer of p in f is given 
by r p = b E r : , (p) = P} . 

Proposit ion 3o 7 o For p E S, 

(1) f.Cp = {g E M : there is a rE f Sttch that g( ,0) = r(P)}; 
(2) 1r (r .Cp) = fp, the orbit of p under the action off; 
(3) r .Cp is closed in M if and only if fp is clo ed in S. 

Proof. The econd statement follow immediately from the first, and the third 
fo llows from the continuity of 1r and the second stat ment. Hence, we need only to 
prove th first tat ment. 

Let g E f .Cp. Then there i 1 E r and h E .Cp such that g = rh· In parti ular, 
g( , O)=r(h( ,o))=r(p). 

ow, suppose g E M such that th re i a 1 E r with g( , 0) = 1(p). Then 
h = ,-1g E .Cp. o, g E f .Cp. The first statement is proven , and so the propo ition 
has been proven. 

Thi propo ition combined with Proposition 3.5 give a criterion to determine 
when a giv n vertical leaf in r \ M is closed. 

Corollary 3080 Let .C be a vertical leaf in r \ M corresponding to the point p E S, 
io e., .C = r [.Cp] . Then .C is closed in r \ M if and only if fp is closed in S. 

T heorem 3o9o Let r c M be a discrete subgroup. Suppose p = (zl, Z2) E S. Let 
Lp = 1r -l (p) be its corresponding vertical leaf in M. 

(1) If p E .12', then the vertical leaf r [.Cp] i closed in r \ M and biholomorphic 
to C*. 

(2) The vertical leaf r [.Cp] i compact in r \ M if and only if the tabilizer r P 

is infinite (or, equivalently, fp contains a loxodromic element) . 
(3) If there is a loxodromic element 1 E r fixing z1 but not z2 (or vice ver a), 

then the vertical leaf r [.Cp] is not closed in r \ M. 

Proof of Statement (1). Let p E .12'. Let bj} c r be an arbitrary equence. Any 
subsequ nee { /jk} of this quence convergent in M U QC will converge to a qua­
siconstant mapping Wiw2 for some WI, W2 E A. Since Z}, Z2 E o n , W2 ::j:. Zj for 
either j = 1 or j = 2. In particular, limk--+ 11k(p) = (w1,w1). Thu, fp has no 
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accumulation points in . This implies that fp is closed in . Thus. by Corollary 
3 .. th vertical I af r [.Cp] is closed . 

ince r [.Cp] is closed in r \ M. the leaf it ·elf is diffeomorphic to r \ .C ,,,1 f · · · . P P• ' ere 
!) IS the sta.bthzer of p 111 r. But rp = {id}. So. r [.Cp] i . diffeomorphic (actually 

btholomorphtc) to C . Stat ment (1) is proven. 

Proof of Statement (2). !early. if r P \ .CP is compa t. then r P is ne es ·arily infinite. 
To prove the converse. we assume without loss of any gen rality that p = ( , O) 

so that the vertical I af in M . .Cp. is given by 

.Cp = {g(z) = az: C1:' E C}. 

We identify .Cp with c by the mapping (g(z) = O'Z) H Q. Since rp is infinite and 
hence has accumul~tio~ points in MUf2C (namely. th quasicon tant mapping 0 
and o). we an vtew Its actwn on C (i. e .. .Cp ) as that of an elementary Klein1· 'h M group wit exactly two limit points, 0 and . 

By definition, each element "' of r P satisfies "!(0) = 0 and "!( ) = . In ction 
V.F of [10]. we see that th re are two pos iblc cases, namely, 

(1) r p i generat d by a nonhyperbolic loxodromic tran formation or 
(2) rp is generated by a loxodromi transformation and an elliptic 'transforma­

tiOn. 

In both cases, f P \ c• is diffeomorphic to a toru ; i. e .. it i compact. Thi prove 
tatement (2). 

Proof of Statement (3). Suppos "'E r is loxodromic and zo E t- {z1 , z
2

} such 
tha.t "' fixe· bot.h zo and z1. As ·umc that zo i th attracting fixed point of "' and 
Zt IS the repellmg fixed point. Then limn "f11 (z2) = zo 0 that (z z ) is 
ac 1 t' . f r If ( ) 1, o an cum

1
u a JOn pomt o 

1 
p. z1, zo is an actual elem nt of fp , th n there would 

be a"' E r uch that"' (zt) = z1 and "f1(z2) = z0, i.e .. an el ment of r that fixe z 
but no~ zo . This would contradict Statement (6) of Theorem 2.2. Thus, fp i no~ 
closed m S, and. by Corollary 3 .. Statement (3) is proven. 

The following two corollaries combine the results from Propo ition 3.1. Corollary 
3.4. and Theorem 3.9. Smce Sl(2, C) i the 2-to-1 cover of M , analogou. result 
hold for Sl(2,C). 

Corollary 3:10. Let r C M be a Kleinian subgroup with limit set A. Then the 
vertzcal folzatzon off\M i not regttlar, but there i an open dense subset off\M on 
whzch the foliation is reguLar and fibres over a complex symplectic complex urface 
as a holomorphic C* -bundle. 

Proof. Since r i Kleinian. its limit ·et is nonempty, which implies by Corollary 
3.4 that the verttcal foliation i not globally regular However [2 1 i a 
d b t f S h I 1 . , n open. 

ense 
1
su se ~ o t at M = 1r- (D 1

) is an open dense sub et of M . Hen e 
r \ M , on -~htch the verttcal foliation is regular. i an open d nse subset of r \ M . 
By Proposttlon 3.1, r act discontinuously on D1 so that r \ [21 is a manifold . 
Furthermore, by Statem;nt (1) of Theorem 3.9. each v rticalleafoff \ M 1 is closed 
and bth~lomorph1 c to C .. So, r \ M 1 is a C* -bundle over th four-manifold r \ D1 . 

In addttwn, the Lte denvattve of the complex tructure on M satisfies Lf..J = 0 0 
that J proJects to a compl x tructur on r \ D1

. Finally, the covariant derivative 
of the omplex contact form on r \ M 1

, dry , i the pullback of a complex ympl ctic 
form w on r \ D1

. 
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Corollary 3.11. Let f c M be a ltniform lattice of M. Then there ar no regular 
vertical leave of r \ M. Purthermor . infinitely many of the vertical leave are 
nonclo ed. and infinitely many are compact. 

Proof. Since r is a uniform lattice, A = C~ o. by Corollary 3.4, the vertical foliation 
is nowhere regular. Sine th poin · in C fixed by a loxodromic el m nt of r are 
den e in A, th re ar infinitely many z E C fixed by a loxodromic element of r. Let 
Zt E t be on such point with loxodromic"' E r such that "f(ZJ) = Z]. Let Z2 b the 
other fixed point of"/, and set p = (z1, z2). By Statement (2) of Theorem 3.9, the 

vertical l af r [.Cp] is compact. Let z3 E C- { z1, z2} and q = ( z1, z3). By Statement 
(3) of Theorem 3.9, the vertical leaf r [.Cq] i · not closed. This prove · th corollary. 

4. FI AL RE lARKS 

The primary motivation of this paper is to describe an example of a compact 
complex contact manifold with a holomorphic but nonregular vertical ubbundle. 
For a general complex contact manifold (M, J, H) , the v rtical subbundle Vi con­
structed as follow . Let L be the complex subbundle given by L = T 1

•0 M / 1-L. Then 
L can be id ntified with th local pan of 1-forms 1r uch that 1-L = ker 1r. Choo e 
a Hermitian bundl metric on L. and let { 1r} h a et of local unit 1-form of L 
defined on an atla , { 0} , of AI. Then. each 1r = u - iv. where u and v = u o J 
are local real-valued 1-form uch that. f r any two inters cting element of the 
atlas, 0 and 0 1

, with corresponding 1-form . 1r and 11'
1

• respectiv ly. there i a 
mapping s : 0 n 0 1 

--7 S 1 such that 11'
1 = s1r on 0 n 0 1

• The vertical sub bundle 
V c TR M is defin d as the pan of the local vector fields U and V = - JU given by 
u(U) = 1, v(U) = 0, and t-(U)du = 0. V then is a particular ]-invariant subbundle 
transverse to 1-LR that generalizes th compl x Reeb vector field on trict compl x 
contact manifolds. For detail . s e 'hapter 12 of [3]. 

As mentioned in the Introduction , ther i a lot yet to be eli covered regarding the 
vertical subbundle on a general complex contact manifold. particularly regarding its 
topology. The mo t studied of the compact omplex contact manifold have inte­
grable. regular vertical subbundles. For example. there are !attic r C H ei c 2

n+l 

of the complex Heisenberg group such that the verticallea\'e of r \ 1-L isc2"+ 1 are 
tori, embedded a complex submanifold . and fibre over a rectangular complex toru 
(see [5]). Also, the v rtical subbundle of th twi tor pace of a compact quater­
nionic Kahler manifold is regular , but it · l aves. which are embedded pheres, are 
nonholomorphic (see [3]) . There i some indication that. if th vertical ubbun­
dle is integrable and the leave are embedded spheres . then V will nee ssarily be 
nonholomorphic. 

The purpose of thi paper wa to describ a compact example wh re V i inte­
grable but not regular. a we did in Corollary 3.11 . Beside providing the de ired 
example, this result al o relate to an open conjecture in real contact geometry, 
namely. the Weinstein conjecture. In [14] . A. \Vein tein conjectur d that on any 
compact r al contact manifold with trivial first homology. the Reeb vector field has 
a clo eel orbit, and. in [3]. D. Blair expanded the conjecture to all compa t real 
contact manifold , noting that t here w r no known examples of a compact contact 
manifold with nontrivial first homology and no clo eel orbits of the R eb vector 
field. Recently, thi conjecture was proven for all three-d imensional ompact con­
tact manifold by C. Taubes [13]. For a uniform lattice r c Sl(2. C). Corollary 3.11 
shows that r \ Sl(2, C) i a compact complex contact manifold with infinitely many 
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accumulation points in . This implies that fp is closed in . Thus. by Corollary 
3 .. th vertical I af r [.Cp] is closed . 

ince r [.Cp] is closed in r \ M. the leaf it ·elf is diffeomorphic to r \ .C ,,,1 f · · · . P P• ' ere 
!) IS the sta.bthzer of p 111 r. But rp = {id}. So. r [.Cp] i . diffeomorphic (actually 

btholomorphtc) to C . Stat ment (1) is proven. 

Proof of Statement (2). !early. if r P \ .CP is compa t. then r P is ne es ·arily infinite. 
To prove the converse. we assume without loss of any gen rality that p = ( , O) 

so that the vertical I af in M . .Cp. is given by 

.Cp = {g(z) = az: C1:' E C}. 

We identify .Cp with c by the mapping (g(z) = O'Z) H Q. Since rp is infinite and 
hence has accumul~tio~ points in MUf2C (namely. th quasicon tant mapping 0 
and o). we an vtew Its actwn on C (i. e .. .Cp ) as that of an elementary Klein1· 'h M group wit exactly two limit points, 0 and . 

By definition, each element "' of r P satisfies "!(0) = 0 and "!( ) = . In ction 
V.F of [10]. we see that th re are two pos iblc cases, namely, 

(1) r p i generat d by a nonhyperbolic loxodromic tran formation or 
(2) rp is generated by a loxodromi transformation and an elliptic 'transforma­

tiOn. 

In both cases, f P \ c• is diffeomorphic to a toru ; i. e .. it i compact. Thi prove 
tatement (2). 

Proof of Statement (3). Suppos "'E r is loxodromic and zo E t- {z1 , z
2

} such 
tha.t "' fixe· bot.h zo and z1. As ·umc that zo i th attracting fixed point of "' and 
Zt IS the repellmg fixed point. Then limn "f11 (z2) = zo 0 that (z z ) is 
ac 1 t' . f r If ( ) 1, o an cum

1
u a JOn pomt o 

1 
p. z1, zo is an actual elem nt of fp , th n there would 

be a"' E r uch that"' (zt) = z1 and "f1(z2) = z0, i.e .. an el ment of r that fixe z 
but no~ zo . This would contradict Statement (6) of Theorem 2.2. Thus, fp i no~ 
closed m S, and. by Corollary 3 .. Statement (3) is proven. 

The following two corollaries combine the results from Propo ition 3.1. Corollary 
3.4. and Theorem 3.9. Smce Sl(2, C) i the 2-to-1 cover of M , analogou. result 
hold for Sl(2,C). 

Corollary 3:10. Let r C M be a Kleinian subgroup with limit set A. Then the 
vertzcal folzatzon off\M i not regttlar, but there i an open dense subset off\M on 
whzch the foliation is reguLar and fibres over a complex symplectic complex urface 
as a holomorphic C* -bundle. 

Proof. Since r i Kleinian. its limit ·et is nonempty, which implies by Corollary 
3.4 that the verttcal foliation i not globally regular However [2 1 i a 
d b t f S h I 1 . , n open. 

ense 
1
su se ~ o t at M = 1r- (D 1

) is an open dense sub et of M . Hen e 
r \ M , on -~htch the verttcal foliation is regular. i an open d nse subset of r \ M . 
By Proposttlon 3.1, r act discontinuously on D1 so that r \ [21 is a manifold . 
Furthermore, by Statem;nt (1) of Theorem 3.9. each v rticalleafoff \ M 1 is closed 
and bth~lomorph1 c to C .. So, r \ M 1 is a C* -bundle over th four-manifold r \ D1 . 

In addttwn, the Lte denvattve of the complex tructure on M satisfies Lf..J = 0 0 
that J proJects to a compl x tructur on r \ D1

. Finally, the covariant derivative 
of the omplex contact form on r \ M 1

, dry , i the pullback of a complex ympl ctic 
form w on r \ D1

. 
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Corollary 3.11. Let f c M be a ltniform lattice of M. Then there ar no regular 
vertical leave of r \ M. Purthermor . infinitely many of the vertical leave are 
nonclo ed. and infinitely many are compact. 

Proof. Since r is a uniform lattice, A = C~ o. by Corollary 3.4, the vertical foliation 
is nowhere regular. Sine th poin · in C fixed by a loxodromic el m nt of r are 
den e in A, th re ar infinitely many z E C fixed by a loxodromic element of r. Let 
Zt E t be on such point with loxodromic"' E r such that "f(ZJ) = Z]. Let Z2 b the 
other fixed point of"/, and set p = (z1, z2). By Statement (2) of Theorem 3.9, the 

vertical l af r [.Cp] is compact. Let z3 E C- { z1, z2} and q = ( z1, z3). By Statement 
(3) of Theorem 3.9, the vertical leaf r [.Cq] i · not closed. This prove · th corollary. 

4. FI AL RE lARKS 

The primary motivation of this paper is to describe an example of a compact 
complex contact manifold with a holomorphic but nonregular vertical ubbundle. 
For a general complex contact manifold (M, J, H) , the v rtical subbundle Vi con­
structed as follow . Let L be the complex subbundle given by L = T 1

•0 M / 1-L. Then 
L can be id ntified with th local pan of 1-forms 1r uch that 1-L = ker 1r. Choo e 
a Hermitian bundl metric on L. and let { 1r} h a et of local unit 1-form of L 
defined on an atla , { 0} , of AI. Then. each 1r = u - iv. where u and v = u o J 
are local real-valued 1-form uch that. f r any two inters cting element of the 
atlas, 0 and 0 1

, with corresponding 1-form . 1r and 11'
1

• respectiv ly. there i a 
mapping s : 0 n 0 1 

--7 S 1 such that 11'
1 = s1r on 0 n 0 1

• The vertical sub bundle 
V c TR M is defin d as the pan of the local vector fields U and V = - JU given by 
u(U) = 1, v(U) = 0, and t-(U)du = 0. V then is a particular ]-invariant subbundle 
transverse to 1-LR that generalizes th compl x Reeb vector field on trict compl x 
contact manifolds. For detail . s e 'hapter 12 of [3]. 

As mentioned in the Introduction , ther i a lot yet to be eli covered regarding the 
vertical subbundle on a general complex contact manifold. particularly regarding its 
topology. The mo t studied of the compact omplex contact manifold have inte­
grable. regular vertical subbundles. For example. there are !attic r C H ei c 2

n+l 

of the complex Heisenberg group such that the verticallea\'e of r \ 1-L isc2"+ 1 are 
tori, embedded a complex submanifold . and fibre over a rectangular complex toru 
(see [5]). Also, the v rtical subbundle of th twi tor pace of a compact quater­
nionic Kahler manifold is regular , but it · l aves. which are embedded pheres, are 
nonholomorphic (see [3]) . There i some indication that. if th vertical ubbun­
dle is integrable and the leave are embedded spheres . then V will nee ssarily be 
nonholomorphic. 

The purpose of thi paper wa to describ a compact example wh re V i inte­
grable but not regular. a we did in Corollary 3.11 . Beside providing the de ired 
example, this result al o relate to an open conjecture in real contact geometry, 
namely. the Weinstein conjecture. In [14] . A. \Vein tein conjectur d that on any 
compact r al contact manifold with trivial first homology. the Reeb vector field has 
a clo eel orbit, and. in [3]. D. Blair expanded the conjecture to all compa t real 
contact manifold , noting that t here w r no known examples of a compact contact 
manifold with nontrivial first homology and no clo eel orbits of the R eb vector 
field. Recently, thi conjecture was proven for all three-d imensional ompact con­
tact manifold by C. Taubes [13]. For a uniform lattice r c Sl(2. C). Corollary 3.11 
shows that r \ Sl(2, C) i a compact complex contact manifold with infinitely many 
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closed orbit of the complex Reeb vector field. 'ote that the fir t homology group 
of r \ Sl(2 C) is i omorphic to the first homology group of the compact hyperbolic 
manifold r \ Hyp3 , which i not necessarily nontrivial ( e [2]) . 

It should be noted however that for a general complex contact manifold the ver­
tical subbundle is not neces ·arily integrable. Re ·ently, D. Blair in [4] howed that 
the standard complex contact structure of the projectivized holomorphic tangent 
bundle of n-dimensional complex hyperbolic space, CH71

, does not hav an inte­
grable vertical ·ubbundle. For a compact example, let r C PU(n, 1) be a discr te 
subgroup such that r \ CHn is compact. Then the projectivized holomorphic tan­
gent bundle of r \ CHn will inherit both the complex contact tru ture and vertical 
sub bundle from CHn. Thus, a straight analogue of vVein tein 's conjecture to the 
cat gory of all compact complex contact manifold is false. Rather it se m · that it 
would need to be restri t d to the category of compact complex contact manifolds 
for which V is integrabl . 
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SOME CONSEQUENCES OF REFLECTION 

ON THE APPROACHABILITY IDEAL 

ASSAF SHARO A 0 IATTEO VIALE 

ABSTRACT. We study the approachability ideal I[K;+j in the context of large 
cardinals and propertie of th regular cardinals below a singular K. As a 
guiding example consider the approachability ideal I[Nw +d assuming that Nw 
is a strong limit. In thi case we obtain that club many point in Nw+ 1 of 
cofinali ty Nn for some n > 1 are approachable as uming the joint reflection of 
countable fami lies of stationary subsets of Nn. This reflect ion principle holds 
under MM fo r a ll n > 1 and for each n > 1 is equiconsistent with Nn being 
weak ly compact in L. T his cha racterizes the t ructure of t he approachabili ty 
ideal I[Nw+d in models of MM . We a lso apply our result to show that the 
Chang conjectu re (K;+, K;) __., (N2, N1) fail in models of MM for all singular 
cardinals K. 

1. T HE APPROA HAB ILITY IDEAL 

In the cour e of development of the pcf- theory of possible cofinali t ies, helah 
has introduced several intere t ing tationary set on the succe sor of a ingular 
cardinal. 1 Among these are the sets of approachable and weakly approachable 
point in ~~:+, where 11: i a singular cardinal. Given A = {aa: a<~~:+}~[~~:+]<", 
8 is weakly approachable with respect to A if there i an H unbounded in 6 of 
minimal order type such that { H n 1 : 1 < 6} is covered2 by { aa : a < 6} and 6 i 
approachable with re pect to A if there i an H unbounded in 6 of minimal order 
type such that { H n 1 : 1 < 6} ~ { aa : a < 6}. 

Definition 1.1. Let 11: be a ingular cardinal. S i (weakly) approachable if there 
is a sequence A = {aa : a < ~~:+} ~ [~~:+]<" and a club C such that 6 is (weakly) 
approachable with respect to a for all 6 E S n C . I[~~:+] is the ideal generated by 
approachable sets; I[~~:+,~~:] i the ideal generated by weakly approachabl et . 

It is clear that I[~~:+] ~ I[~~:+, 4 For many of the known applicat ions of ap­
proachabili ty, it is irrelevant whether we concentrate on the notion of weak ap­
proachability or on the apparently stronger notion of approachability. Moreover in 
the case that 11: is a strong limit and singular, I[~~:+] = I[~~:+,~~:] (section 3.4 and 
proposit ion 3.23 of [3]). For this reason we feel free to concentrate our attention 
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